返回

高中数学

首页
  • 解答题
    本题设有(1)(2)(3)三个选考题,每题7分,请考生任选2题作答,满分14分.如果多做,则按所做的前两题计分.作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.
    (1)已知矩阵M=
    1a
    b1
    N=
    c2
    0d
    ,且MN=
    20
    -20

    (Ⅰ)求实数a,b,c,d的值;(Ⅱ)求直线y=3x在矩阵M所对应的线性变换下的像的方程.
    (2)在直角坐标系xoy中,直线l的参数方程为
    x=3-
    2
    2
    t
    y=
    5
    -
    2
    2
    t
    (t为参数).在极坐标系(与直角坐标系xoy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为ρ=2
    5
    sinθ

    (Ⅰ)求圆C的直角坐标方程;(Ⅱ)设圆C与直线l交于点A、B,若点P的坐标为(3,
    5
    )

    求|PA|+|PB|.
    (3)已知函数f(x)=|x-a|.
    (Ⅰ)若不等式f(x)≤3的解集为{x|-1≤x≤5},求实数a的值;
    (Ⅱ)在(Ⅰ)的条件下,若f(x)+f(x+5)≥m对一切实数x恒成立,求实数m的取值范围.
    本题信息:2010年福建数学解答题难度较难 来源:未知
  • 本题答案
    查看答案
本试题 “本题设有(1)(2)(3)三个选考题,每题7分,请考生任选2题作答,满分14分.如果多做,则按所做的前两题计分.作答时,先用2B铅笔在答题卡上把所选题目对应...” 主要考查您对

绝对值不等式

简单曲线的极坐标方程

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 绝对值不等式
  • 简单曲线的极坐标方程

绝对值不等式:

当a>0时,有
或x<-a 。


绝对值不等式的解法:
 
          (4)含两个或两个以上绝对值符号的不等式可用零点分区间的方法去绝对值符号求解,也可以用图象法求解。

曲线的极坐标方程的定义:

一般地,在极坐标系中,如果平面曲线C上任意一点的极坐标中至少有一个满足方程f(ρ,θ)=0,并且坐标适合方程f(ρ,θ)=0的点都在曲线上,那么方程f(ρ,θ)=0叫做曲线C的极坐标方程。


求曲线的极坐标方程的常用方法:

直译法、待定系数法、相关点法等。

圆心为(α,β)(a>0),半径为a的圆的极坐标方程为,此圆过极点O。

直线的极坐标方程:

直线的极坐标方程是ρ=1/(2cosθ+4sinθ)。

圆的极坐标方程:


这是圆在极坐标系下的一般方程。
 
过极点且半径为r的圆方程: