返回

初中数学

首页
  • 解答题
    设面积为5π的圆的半径为y,请回答下列问题:
    (1)y是有理数吗?请说明你的理由;
    (2)估计y的值(结果精确到十分位),并用计算器验证你的估计.
    本题信息:数学解答题难度较难 来源:未知
  • 本题答案
    查看答案
本试题 “设面积为5π的圆的半径为y,请回答下列问题:(1)y是有理数吗?请说明你的理由;(2)估计y的值(结果精确到十分位),并用计算器验证你的估计.” 主要考查您对

近似数和有效数字

无理数的定义

估算无理数的大小

一元二次方程的解法

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 近似数和有效数字
  • 无理数的定义
  • 估算无理数的大小
  • 一元二次方程的解法
近似数:
一个数与准确数相近(比准确数略多或者略少些),这一个数称之为近似数。
如:我国的人口无法计算准确数目,但是可以说出一个近似数。
比如说我国人口有13亿,13亿就是一个近似数。

有效数字:
是指从该数字左边第一个非0的数字到该数字末尾的数字个数(有点绕口)。例如:
3一共有1个有效数字,0.0003有一个有效数字,0.1500有4个有效数字,1.9×103有两个有效数字(不要被103迷惑,只需要看1.9的有效数字就可以了,10n看作是一个单位)。

精确度:
近似数与准确数的接近程度,可以用精确度表示。
(1)一个近似数四舍五入到哪一位,就说这个近似数精确到哪一位;
(2)规定有效数字的个数,也是对近似数精确程度的一种要求。
有效数字注意:
①近似数的精确度有两种形式:精确到哪一位;保留几个有效数字;
②对于绝对值较大的数取近似值时,结果一般用科学计数法来表示,如:8 90 000(保留三个有效数字)的近似值,得8 903 000≈8.90×106
③对带有计数单位的近似数,如2.3万,他有两个有效数字:2、3,而不是五个有效数字。
有效数字的舍入规则:
1、当保留n位有效数字,若后面的数字小于第n位单位数字的0.5就舍掉。
2、当保留n位有效数字,若后面的数字大于第n位单位数字的0.5 ,则第位数字进1。
3、当保留n位有效数字,若后面的数字恰为第n位单位数字的0.5 ,则第n位数字若为偶数时就舍掉后面的数字,若第n位数字为奇数加1。
如将下组数据保留三位
45.77=45.8                               43.03=43.0
38.25=38.2                               47.15=47.2
无理数定义:
即非有理数之实数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。 常见的无理数有大部分的平方根、π和e(其中后两者同时为超越数)等。
无理数是无限不循环小数。如圆周率π、等。
无理数性质:
无限不循环的小数就是无理数 。换句话说,就是不可以化为整数或者整数比的数 
性质1 无理数加(减)无理数既可以是无理数又可以是有理数 
性质2 无理数乘(除)无理数既可以是无理数又可以是有理数 
性质3 无理数加(减)有理数一定是无理数 
性质4 无理数乘(除)一个非0有理数一定是无理数
无理数与有理数的区别:
1、把有理数和无理数都写成小数形式时,有理数能写成有限小数和无限循环小数,
比如:4=4.0,=0.8,=0.33333……
而无理数只能写成无限不循环小数,
比如:=1.414213562…………
根据这一点,人们把无理数定义为无限不循环小数;
2、所有的有理数都可以写成两个整数之比,而无理数不能。根据这一点,有人建议给无理数摘掉,把有理数改叫为“比数”,把无理数改叫为“非比数”。

无理数的识别:
判断一个数是不是无理数,关键就看它能不能写出无限不循环小数,而把无理数写成无限不循环小数,不但麻烦,而且还是我们利用现有知识无法解决的难题。
初中常见的无理数有三种类型:
(1)含根号且开方开不尽的方根,但切不可认为带根号的数都是无理数;
(2)化简后含π的式子;
(3)不循环的无限小数。
掌握常见无理数的类型有助于识别无理数。


无理数的历史:
毕达哥拉斯(Pythagqras,约公元前885年至公元前400年间)是古希腊的大数学家。他证明许多重要的定理,包括后来以他的名字命名的毕达哥拉斯定理(勾股弦定理),即直角三角形两直角边为边长的正方形的面积之和等于以斜边为边长的正方形的面积。毕达哥拉斯将数学知识运用得纯熟之后,觉得不能只满足于用来算题解题,于是他试着从数学领域扩大到哲学,用数的观点去解释一下世界。经过一番刻苦实践,他提出“凡物皆数”的观点,数的元素就是万物的元素,世界是由数组成的,世界上的一切没有不可以用数来表示的,数本身就是世界的秩序。在他死后大约200年,他的门徒们把这种理论加以研究发展,形成了一个强大的毕达哥拉斯学派。
公元前500年,古希腊毕达哥拉斯(Pythagoras)学派的弟子希伯索斯(Hippasus)发现了一个惊人的事实,一个正方形的对角线与其一边的长度是不可公度的(若正方形的边长为1,则对角线的长不是一个有理数),这一不可公度性与毕氏学派的“万物皆数”(指有理数)的哲理大相径庭。这一发现使该学派领导人惶恐,认为这将动摇他们在学术界的统治地位,于是极力封锁该真理的流传,希伯索斯被迫流亡他乡,不幸的是,在一条海船上还是遇到毕氏门徒,于是希伯索斯被残忍地扔进了大海。
希伯索斯的发现,第一次向人们揭示了有理数系的缺陷,证明了它不能同连续的无限直线等同看待,有理数并没有布满数轴上的点,在数轴上存在着不能用有理数表示的“孔隙”。而这种“孔隙”经后人证明简直多得“不可胜数”。于是,古希腊人把有理数视为连续衔接的那种算术连续统的设想彻底地破灭了。不可公度量的发现连同芝诺悖论一同被称为数学史上的第一次数学危机,对以后2000多年数学的发展产生了深远的影响,促使人们从依靠直觉、经验而转向依靠证明,推动了公理几何学和逻辑学的发展,并且孕育了微积分思想萌芽。
不可约的本质是什么?长期以来众说纷纭,得不到正确的解释,两个不可通约的比值也一直认为是不可理喻的数。15世纪意大利著名画家达.芬奇称之为“无理的数”,17世纪德国天文学家开普勒称之为“不可名状”的数。
然而真理毕竟是淹没不了的,毕氏学派抹杀真理才是“无理”。人们为了纪念希伯索斯这位为真理而献身的可敬学者,就把不可通约的量取名“无理数”——这就是无理数的由来。


在一些题目中我们常常需要估算无理数的取值范围,要想准确地估算出无理数的取值范围需要记住一些常用数的平方。一般情况下从1到达20整数的平方都应牢记。
例:估算的取值范围。
解:因为1<3<4,所以
即:1<<2如果想估算的更精确一些,
比如说想精确到0.1.可以这样考虑:因为17的平方是289,18的平方是324,所以1.7的平方是2.89,1.8的平方是3.24.
因为2.89<3<3.24,
所以
所以1.7<<1.8。
如果需要估算的数比较大,可以找几个比较接近的数值验证一下。

比较无理数大小的几种方法:
比较无理数大小的方法很多,在解题时,要根据所给无理数的特点,选择合适的比较方法。
一、直接法
直接利用数的大小来进行比较。
①、同是正数:
例:  与3的比较
根据无理数和有理数的联系,被开数大的那个就大。
因为3=>,所以3>
②、 同是负数:
根据无理数和有理数的联系,及同是负数绝对值大的反而小。
③、 一正一负:
正数大于一切负数。

二、隐含条件法:
根据二次根式定义,挖掘隐含条件。
 例:比较的大小。
因为成立
所以a-2≧0即a≧2
所以1-a≦-1
所以≧0,≦-1
所以>

三、同次根式下比较被开方数法:
例:比较4与5大小
因为



四、作差法:
若a-b>0,则a>b
例:比较3--2的大小
因为3---2
=3--+2
=5-2
<=2.5
所以:5-2>0
即3->-2

五、作商法:
a>0,b>0,若>1,则a>b
例:比较的大小
因为÷
=×
=<1
所以:<

六、找中间量法
要证明a>b,可找中间量c,转证a>c,c>b
例:比较的大小
因为>1,1>
所以>

七、平方法:
a>0,b>0,若a2>b2,则a>b。
例:比较的大小
()2=5+2+11=16+2
()2=6+2+10=16+2
所以:<

八、倒数法:


九、有理化法:
可分母有理化,也可分子有理化。



十、放缩法:


常用无理数口诀记忆:
√2≈1.41421:意思意思而已
√3≈1.7320:一起生鹅蛋
√5≈2.2360679:两鹅生六蛋(送)六妻舅
√7≈2.6457513:二妞是我,气我一生
√8=2√2≈2.82842啊,不啊不是啊
e≈2.718:粮店吃一把
π≈3.14159,26535,897,932,384,262:
山巅一寺一壶酒,尔乐苦杀吾,把酒吃,酒杀尔,杀不死,尔乐尔


一元二次方程的解:
能够使方程左右两边相等的未知数的值叫做方程的解。
解一元二次方程方程:
求一元二次方程解的过程叫做解一元二次方程方程。

韦达定理:
一元二次方程根与系数的关系(以下两个公式很重要,经常在考试中运用到)
一般式:ax2+bx+c=0的两个根x1和x2关系:
x1+x2= -b/a
x1·x2=c/a


一元二次方程的解法:
1、直接开平方法
利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。
直接开平方法适用于解形如的一元二次方程,根据平方根的定义可知,x+a 是b的平方根,当时,;当b<0时,方程没有实数根。
用直接开平方法求一元二次方程的根,一定要正确运用平方根的性质,即正数的平方根有两个,它们互为相反数,零的平方根是零,负数没有平方根。

2、配方法
配方法是一种重要的数学方法,它不仅在解一元二次方程上有所应用,而且在数学的其他领域也有着广泛的应用。
配方法的理论根据是完全平方公式,把公式中的a看做未知数x,并用x代替,则有

3、公式法
公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。
一元二次方程 的求根公式:
求根公式是专门用来解一元二次方程的,故首先要求a≠0;有因为开平方运算时,被开方数必须是非负数,所以第二个条件是b2-4ac≥0。即求根公式使用的前提条件是a≠0且b2-4ac≥0。

4、因式分解法
因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。