返回

高中数学

首页
  • 解答题
    计算下列各题:
    (1)(lg5)2+lg2×lg50;
    (2)已知a-a-1=1,求
    (a3+a-3)(a2+a-2-3)   
    a4-a-4
    的值.
    本题信息:数学解答题难度一般 来源:未知
  • 本题答案
    查看答案
本试题 “计算下列各题:(1)(lg5)2+lg2×lg50;(2)已知a-a-1=1,求(a3+a-3)(a2+a-2-3) a4-a-4的值.” 主要考查您对

指数与指数幂的运算(整数、有理、无理)

对数函数的图象与性质

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 指数与指数幂的运算(整数、有理、无理)
  • 对数函数的图象与性质

n次方根的定义

一般地,如果xn=a,那么x叫做a的n次方根,其中n>1,且n∈N*。

分数指数幂的意义

(1)
(2)
(3)0的正分数指数幂等于0,0的负分数指数幂没有意义。


n次方根的性质:

(1)0的n次方根是0,即=0(n>1,n∈N*);
(2)=a(n∈N*);
(3)当n为奇数时,=a;当n为偶数时,=|a|。

幂的运算性质

(1)
(2)
(3)
注意:一般地,无理数指数幂(a>0,α是无理数)是一个确定的实数,上述有理指数幂的运算性质,对于无理指数幂都适用。


对数函数的图形:


对数函数的图象与性质


对数函数与指数函数的对比:

 (1)对数函数与指数函数互为反函数,它们的定义域、值域互换,图象关于直线y=x对称.
 (2)它们都是单调函数,都不具有奇偶性.当a>l时,它们是增函数;当O<a<l时,它们是减函数.
 (3)指数函数与对数函数的联系与区别:




对数函数单调性的讨论:

解决与对数函数有关的函数单调性问题的关键:一是看底数是否大于l,当底数未明确给出时,则应对底数a是否大于1进行讨论;二是运用复合法来判断其单调性,但应注意中间变量的取值范围;三要注意其定义域(这是一个隐形陷阱),也就是要坚持“定义域优先”的原则.

利用对数函数的图象解题

涉及对数型函数的图象时,一般从最基本的对数函数的图象人手,通过平移、伸缩、对称变换得到对数型函数的图象,特别地,要注意底数a>l与O<a<l的两种不同情况,


底数对函数值大小的影响

1.在同一坐标系中分别作出函数的图象,如图所示,可以看出:当a>l时,底数越大,图象越靠近x轴,同理,当O<a<l时,底数越小,函数图象越靠近x轴.利用这一规律,我们可以解决真数相同、对数不等时判断底数大小的问题.
 

2.类似地,在同一坐标系中分别作出的图象,如图所示,它们的图象在第一象限的规律是:直线x=l把第一象限分成两个区域,每个区域里对数函数的底数都是由右向左逐渐减小,比如分别对应函数,则必有