返回

高中数学

首页
  • 解答题
    设某物体一天中的温度T是时间的函数:T(t)=at3+bt2+ct+d(a≠0),其中温度的单位是℃,时间单位是小时,t=0表示12:00,取正值表示12:00以后.若测得该物体在8:00的温度是8℃,12:00的温度为60℃,13:00的温度为58℃,且已知该物体的温度在8:00和16:00有相同的变化率.
    (1)写出该物体的温度T关于时间的函数关系式;
    (2)该物体在10:00到14:00这段时间中(包括10:00和14:00),何时温度最高,并求出最高温度;
    (3)如果规定一个函数f(x)在区间[x1,x2](x1<x2)上的平均值为
    1
    x2-x1
    x2x1
    f(x)dx
    ,求该物体在8:00到16:00这段时间内的平均温度.
    本题信息:数学解答题难度较难 来源:未知
  • 本题答案
    查看答案
本试题 “设某物体一天中的温度T是时间的函数:T(t)=at3+bt2+ct+d(a≠0),其中温度的单位是℃,时间单位是小时,t=0表示12:00,取正值表示12:00以后.若测得该物体...” 主要考查您对

指数函数模型的应用

对数函数模型的应用

函数解析式的求解及其常用方法

定积分的概念及几何意义

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 指数函数模型的应用
  • 对数函数模型的应用
  • 函数解析式的求解及其常用方法
  • 定积分的概念及几何意义
指数函数模型的定义

恰当选择自变量将问题的目标表示成自变量的函数f(x)=a·bx+c(a、b、c为常数,a≠0,b>0,b≠1)的形式,进而结合指数函数的性质解决问题。

指数型复合函数的性质的应用:

(1)与指数函数有关的复合函数基本上有两类:
;②.无论是哪一类,要搞清楚复合过程,才能确定复合函数的值域和单调区间,具体问题中,a的取值不定时,要对a进行分类讨论.
(2)对于形如一类的指数型复合函数,有以下结论:
①函数的定义域与f(x)的定义域相同;
②先确定函数f(x)的值域,再根据指数函数的值域、单调性,确定函数的值域;
③当a>l时,函数与函数f(x)的单调性相同;当O<a<l时,函数与函数f(x)的单调性相反.


对数函数模型的定义:

恰当选择自变量将问题的目标表示成自变量的函数f(x)=mlogax+n(m、n、a为常数,m≠0,a>0,a≠1)的形式,进而结合对数函数的性质解决问题。

对数函数模型解析式

f(x)=mlogax+n(m、n、a为常数,m≠0,a>0,a≠1)


用函数模型解函数应用题的步骤:

1.审题:弄清题意,分清条件和结论,确定数量关系,初步选择数学模型;
2.建模:将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识,建立相应的数学模型;
3.求模:求解数学模型,得出数学结论;
4.还原:将数学问题还原为实际问题的意义。


函数解析式的常用求解方法:

(1)待定系数法:(已知函数类型如:一次、二次函数、反比例函数等):若已知f(x)的结构时,可设出含参数的表达式,再根据已知条件,列方程或方程组,从而求出待定的参数,求得f(x)的表达式。待定系数法是一种重要的数学方法,它只适用于已知所求函数的类型求其解析式。
(2)换元法(注意新元的取值范围):已知f(g(x))的表达式,欲求f(x),我们常设t=g(x),从而求得,然后代入f(g(x))的表达式,从而得到f(t)的表达式,即为f(x)的表达式。
(3)配凑法(整体代换法):若已知f(g(x))的表达式,欲求f(x)的表达式,用换元法有困难时,(如g(x)不存在反函数)可把g(x)看成一个整体,把右边变为由g(x)组成的式子,再换元求出f(x)的式子。
(4)消元法(如自变量互为倒数、已知f(x)为奇函数且g(x)为偶函数等):若已知以函数为元的方程形式,若能设法构造另一个方程,组成方程组,再解这个方程组,求出函数元,称这个方法为消元法。
(5)赋值法(特殊值代入法):在求某些函数的表达式或求某些函数值时,有时把已知条件中的某些变量赋值,使问题简单明了,从而易于求出函数的表达式。


定积分的定义:

设函数f(x)在[a,b]上有界(通常指有最大值和最小值),在a与b之间任意插入n-1个分点,,将区间[a,b]分成n个小区间(i=1,2,…,n),记每个小区间的长度为(i=1,2,…,n),在上任取一点ξi,作函数值f(ξi)与小区间长度的乘积f(ξi (i=1,2,…,n),并求和,记λ=max{△xi;i=1,2,…,n },如果当λ→0时,和s总是趋向于一个定值,则该定值便称为函数f(x)在[a,b]上的定积分,记为,即,其中, 称为函数f(x)在区间[a,b]的积分和。

定积分的几何意义:

定积分在几何上,
当f(x)≥0时,表示由曲线y=f(x)、直线x=a、直线x=b与x轴所围成的曲边梯形的面积;
当f(x)≤0时,表示由曲线y=f(x)、直线x=a、直线x=b与x轴所围成的曲边梯形的面积的负值;
一般情况下,表示介于曲线y=f(x)、两条直线x=a、x=b与x轴之间的个部分面积的代数和。


定积分的性质:

(1)(k为常数);
(2)
(3)(其中a<c<b)。


 定积分特别提醒:

①定积分不是一个表达式,而是一个常数,它只与被积函数及积分区间有关,而与积分变量的记法无关,例如: 
②定义中区间的分法和ξ的取法是任意的,