本试题 “已知平面上向量,则下列关系式正确的是( )A.B.C.D.” 主要考查您对向量的概念及几何表示
向量数乘运算及几何意义
向量数量积的含义及几何意义
等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
向量的概念:
在数学当中,我们把这种既有大小又有方向的量统称为向量。
几何表示:
向量的数乘的定义:
我们规定实数λ与向量的积是一个向量,记作λ;
向量的数乘的长度和方向规定如下:
(1);
(2)当λ>0时,λ的方向与的方向相同;当λ<0时,λ的方向与的方向相反;当λ=0时,;注意:λ≠0
数乘运算的坐标表示:
设,则。
实数与向量积的运算律:
(1);
(2);
(3)。
向量数乘运算的理解:
①向量数乘运算结果仍然是向量.
②实数与向量的积的特殊情况:
③实数与向量可以求积,但是不能进行加减运算,比如无意义。
④由向量数乘的概念可知其几何意义,可以把向量a的长度扩大(当时),也可以缩小(当时),同时,我们可以不改变向量a的方向,也可以改变向量a的方向(当λ<0时)。
两个向量的夹角的定义:
对于非零向量,,作称为向量,的夹角,当=0时,,同向,当=π时,,反向,
当时,垂直。
两个向量数量积的含义:
如果两个非零向量,,它们的夹角为,我们把数量叫做与的数量积(或内积或点积),记作:,即。
叫在上的投影。
规定:零向量与任一向量的数量积是0,注意数量积是一个实数,不再是一个向量。
两个向量数量积的几何意义:
数量积等于的模与在上的投影的乘积。
向量数量积的性质:
设两个非零向量
(1);
(2);
(3);
(4);
(5)当,同向时,;当与反向时,;当为锐角时,为正且,不同向,;当为钝角时,为负且,不反向,。
与“已知平面上向量,则下列关系式正确的是( )A.B.C.D.”考查相似的试题有: