返回

高中数学

首页
  • 填空题
    f(x)=Asin(
    πx
    2
    +α)
    (A≠0),若f(2006)=A,则f(2007)=______.
    本题信息:数学填空题难度一般 来源:未知
  • 本题答案
    查看答案
本试题 “设f(x)=Asin(πx2+α)(A≠0),若f(2006)=A,则f(2007)=______.” 主要考查您对

三角函数的诱导公式

函数y=Asin(wx+φ)的图象与性质

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 三角函数的诱导公式
  • 函数y=Asin(wx+φ)的图象与性质

诱导公式:

公式一
公式二
公式三
公式四
公式五
公式六
规律:奇变偶不变,符号看象限。即形如(2k+1)90°±α,则函数名称变为余名函数,正弦变余弦,余弦变正弦,正切变余切,余切变正切。形如2k×90°±α,则函数名称不变。


诱导公式口诀“奇变偶不变,符号看象限”意义:

 的三角函数值.
  (1)当k为偶数时,等于α的同名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号;
  (2)当k为奇数时,等于α的异名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号。
 
记忆方法一:奇变偶不变,符号看象限:
   
 
记忆方法二:无论α是多大的角,都将α看成锐角.
   
以诱导公式二为例:
 若将α看成锐角(终边在第一象限),则π十α是第三象限的角(终边在第三象限),正弦函数的函数值在第三象限是负值,余弦函数的函数值在第三象限是负值,正切函数的函数值在第三象限是正值.这样,就得到了诱导公式二.
以诱导公式四为例:
        
若将α看成锐角(终边在第一象限),则π-α是第二象限的角(终边在第二象限),正弦函数的三角函数值在第二象限是正值,余弦函数的三角函数值在第二象限是负值,正切函数的三角函数值在第二象限是负值.这样,就得到了诱导公式四.
 
诱导公式的应用:
 
运用诱导公式转化三角函数的一般步骤:
     
特别提醒:三角函数化简与求值时需要的知识储备:①熟记特殊角的三角函数值;②注意诱导公式的灵活运用;③三角函数化简的要求是项数要最少,次数要最低,函数名最少,分母能最简,易求值最好。

函数的图象:

1、振幅、周期、频率、相位、初相:函数,表示一个振动量时,A表示这个振动的振幅,往返一次所需的时间T=,称为这个振动的周期,
单位时间内往返振动的次数称为振动的频率,称为相位,x=0时的相位叫初相。
2、用“五点法”作函数的简图主要通过变量代换,设X=由X取0,来找出相应的x的值,通过列表,计算得出五点的坐标,描点后得出图象。
3、函数+K的图象与y=sinx的图象的关系:
把y=sinx的图象纵坐标不变,横坐标向左(φ>0)或向右(φ<0),y=sin(x+φ)
把y=sin(x+φ)的图象纵坐标不变,横坐标变为原来的y=sin(ωx+φ)
把y=sin(ωx+φ)的图象横坐标不变,纵坐标变为原来的A倍,y=Asin(x+φ)
把y=Asin(x+φ)的图象横坐标不变,纵坐标向上(k>0)或向下(k<0),y=Asin(x+φ)+K;
若由y=sin(ωx)得到y=sin(ωx+φ)的图象,则向左或向右平移个单位。


函数y=Asin(x+φ)的性质:

1、y=Asin(x+φ)的周期为
2、y=Asin(x+φ)的的对称轴方程是,对称中心(kπ,0)。