本试题 “(1)如图1,请你类比直线和一个圆的三种位置关系,在图1的①、②、③中,分别各画出一条直线,使它与两个圆都相离、与两个圆都相切、与一个圆相离且与另一个圆...” 主要考查您对直线与圆的位置关系(直线与圆的相交,直线与圆的相切,直线与圆的相离)
圆和圆的位置关系(圆和圆的相离,圆与圆的相交,圆与圆的相切)
等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
直线与圆的位置关系:
直线与圆的位置关系有三种:直线与圆相交,直线与圆相切,直线与圆相离。
(1)相交:直线和圆有两个公共点时,叫做直线和圆相交,这时直线叫做圆的割线,公共点叫做交点AB与⊙O相交,d<r;
(2)相切:直线和圆有唯一公共点时,叫做直线和圆相切,这时直线叫做圆的切线,这个唯一的公共点叫做切点。AB与⊙O相切,d=r。
(3)相离:直线和圆没有公共点时,叫做直线和圆相离,AB与圆O相离,d>r。(d为圆心到直线的距离)
圆和圆位置关系的性质与判定:
设两圆的半径分别为R和r,圆心距为d,那么
两圆外离d>R+r(没有交点)
两圆外切d=R+r (有一个交点,叫切点)
两圆相交R-r<d<R+r(R≥r)(有两个交点)
两圆内切d=R-r(R>r) (有一个交点,叫切点)
两圆内含d<R-r(R>r)(没有交点)
两圆相切的性质:
(1)连心线:两圆圆心的连线。
(2)两圆相切的性质:相切两圆的连心线必过切点,即两圆圆心、切点三点在一条直线上。
与“(1)如图1,请你类比直线和一个圆的三种位置关系,在图1的①...”考查相似的试题有: