返回

初中数学

首页
  • 单选题
    已知:a=
    1
    10
    -3
    ,b=
    1
    10
    +3
    ,则
    a2+b2-2
    的值等于(  )
    A.5B.6C.7D.8

    本题信息:数学单选题难度一般 来源:未知
  • 本题答案
    查看答案
本试题 “已知:a=110-3,b=110+3,则a2+b2-2的值等于( )A.5B.6C.7D.8” 主要考查您对

二次根式的定义

最简二次根式

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 二次根式的定义
  • 最简二次根式
二次根式:
我们把形如叫做二次根式。
二次根式必须满足:
含有二次根号“”;
被开方数a必须是非负数。

确定二次根式中被开方数的取值范围:
要是二次根式有意义,被开方数a必须是非负数,即a≥0,由此可确定被开方数中字母的取值范围。
二次根式性质:
(1)a≥0 ; ≥0 (双重非负性 );

(2)

(3)
                            0(a=0);

(4)

(5)

二次根式判定:
①二次根式必须有二次根号,如等;
②二次根式中,被开方数a可以是具体的一个数,也可以是代数式;
③二次根式定义中a≥0 是定义组成的一部分,不能省略;
④二次根式是一个非负数;
⑤二次根式与算术平方根有着内在的联系,(a≥0 )就表示a的算术平方根。

二次根式的应用:
主要体现在两个方面:
(1)利用从特殊到一般,在由一般到特殊的重要思想方法,解决一些规律探索性问题;
(2)利用二次根式解决长度、高度计算问题,根据已知量,求出一些长度或高度,或设计省料的方案,以及图形的拼接、分割问题。这个过程需要用到二次根式的计算,其实就是化简求值。


最简二次根式定义:
被开方数中不含字母,并且被开方数中所有因式的幂的指数都小于2,这样的二次根式称为最简二次根式。
有理化因式:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,则说这两个代数式互为有理化因式。


最简二次根式同时满足下列三个条件:
(1)被开方数的因数是整数,因式是整式;
(2)被开方数中不含有能开的尽的因式;
(3)被开方数不含分母。
最简二次根式判定:
①在二次根式的被开方数中,只要含有分数或小数就不是最简二次根式;
②在二次根式的被开方数中的每一个因式(或因数),如果幂的指数等于或大于2,也不是最简二次根式。

化二次根式为最简二次根式的方法和步骤:
①如果被开方数是分数(包括小数)或分式,先利用商的算数平方根的性质把它写成分式的形式,然后利用分母有理化进行化简。
②如果被开方数是整数或整式,先将他们分解因数或因式,然后把能开得尽方的因数或因式开出来。