反比例函数解析式的确定方法:
由于在反比例函数关系式 :y= 中,只有一个待定系数k,确定了k的值,也就确定了反比例函数。因此,只需给出一组x、y的对应值或图象上一点的坐标,代入中即可求出k的值,从而确定反比例函数的关系式。但在实际求反比例函数的解析式时,应该具体问题具体分析。
反比例函数的应用:
建立函数模型,解决实际问题。
用待定系数法求反比例函数关系式的一般步骤是: ①设所求的反比例函数为:y=
(k≠0);
②根据已知条件(自变量与函数的对应值)列出含k的方程;
③由代人法解待定系数k的值;
④把k值代人函数关系式y=
中。
反比例函数应用一般步骤:
①审题;
②求出反比例函数的关系式;
③求出问题的答案,作答。
根的判别式:一元二次方程ax
2+bx+c=0(a≠0)的根的判别式△=b
2-4ac。
定理1 ax
2+bx+c=0(a≠0)中,△>0
方程有两个不等实数根;
定理2 ax
2+bx+c=0(a≠0)中,△=0
方程有两个相等实数根;
定理3 ax
2+bx+c=0(a≠0)中,△<0
方程没有实数根。
根的判别式逆用(注意:根据课本“反过来也成立”)得到三个定理。
定理4 ax
2+bx+c=0(a≠0)中,方程有两个不等实数根
△>0;
定理5 ax
2+bx+c=0(a≠0)中,方程有两个相等实数根
△=0;
定理6 ax
2+bx+c=0(a≠0)中,方程没有实数根
△<0。
注意:(1)再次强调:根的判别式是指△=b
2-4ac。
(2)使用判别式之前一定要先把方程变化为一般形式,以便正确找出a、b、c的值。
(3)如果说方程,即应当包括有两个不等实根或有两相等实根两种情况,此时b
2-4ac≥0切勿丢掉等号。
(4)根的判别式b
2-4ac的使用条件,是在一元二次方程中,而非别的方程中,因此,要注意隐含条件a≠0。
根的判别式有以下应用:①不解一元二次方程,判断根的情况。
②根据方程根的情况,确定待定系数的取值范围。
③证明字母系数方程有实数根或无实数根。
④应用根的判别式判断三角形的形状。
⑤判断当字母的值为何值时,二次三项是完全平方式。
⑥可以判断抛物线与直线有无公共点。
⑦可以判断抛物线与x轴有几个交点。
⑧利用根的判别式解有关抛物线
(△>0)与x轴两交点间的距离的问题。