返回

初中一年级数学

首页
  • 解答题
    操作实验:
    如图,把等腰三角形沿顶角平分线对折并展开,发现被折痕分成的两个三角形成轴对称,所以△ABD≌△ACD,所以∠B=∠C.
    归纳结论:
    如果一个三角形有两条边相等,那么这两条边所对的角也相等.根据上述内容,回答下列问题:
    思考验证:
    (1)如图(4),在△ABC中,AB=AC,试说明∠B=∠C的理由;

    探究应用:
    (2)如图(5),CB⊥AB,垂足为A,DA⊥AB,垂足为B.E为AB的中点,AB=BC,CE⊥BD.
    (i)BE与AD是否相等,为什么?
    (ii)小明认为AC是线段DE的垂直平分线,你认为对吗?说说你的理由;
    (iii)∠DBC与∠DCB相等吗试?说明理由.

    本题信息:2011年江苏省期末题数学解答题难度极难 来源:尹占江
  • 本题答案
    查看答案
本试题 “操作实验:如图,把等腰三角形沿顶角平分线对折并展开,发现被折痕分成的两个三角形成轴对称,所以△ABD≌△ACD,所以∠B=∠C.归纳结论:如果一个三角形有两条边...” 主要考查您对

全等三角形的性质

垂直平分线的性质

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 全等三角形的性质
  • 垂直平分线的性质
全等三角形:
两个全等的三角形,而该两个三角形的三条边及三个角都对应地相等。全等三角形是几何中全等的一种。根据全等转换,两个全等三角形可以是平移、旋转、轴对称,或重叠等。当两个三角形的对应边及角都完全相对时,该两个三角形就是全等三角形。正常来说,验证两个全等三角形时都以三个相等部分来验证,最后便能得出结果。
全等三角形的对应边相等,对应角相等。
①全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;
②全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角;
③有公共边的,公共边一定是对应边;
④有公共角的,角一定是对应角;
⑤有对顶角的,对顶角一定是对应角。

全等三角形的性质:
1.全等三角形的对应角相等。
2.全等三角形的对应边相等。
3.全等三角形的对应边上的高对应相等。
4.全等三角形的对应角的角平分线相等。
5.全等三角形的对应边上的中线相等。
6.全等三角形面积相等。
7.全等三角形周长相等。
8.全等三角形的对应角的三角函数值相等。



垂直平分线的概念:
垂直于一条线段并且平分这条线段的直线,叫做这条线段的垂直平分线(中垂线)。
如图:直线MN即为线段AB的垂直平分线。

垂直平分线的性质:
1.垂直平分线垂直且平分其所在线段。
2.垂直平分线上任意一点,到线段两端点的距离相等。
逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
3.如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线。
4.三角形三条边的垂直平分线相交于一点,该点叫外心,并且这一点到三个顶点的距离相 等。
(此时以外心为圆心,外心到顶点的长度为半径,所作的圆为此三角形的外接圆。)

判定:
①利用定义;
②到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
(即线段垂直平分线可以看成到线段两端点距离相等的点的集合)

尺规作法:(用圆规作图)
1、在线段的中心找到这条线段的中点通过这个点做这条线段的垂线段。
2、分别以线段的两个端点为圆心,以大于线段的二分之一长度为半径画弧线。得到两个交点(两交点交与线段的异侧)。
3、连接这两个交点。
原理:等腰三角形的高垂直平分底边。