本试题 “在等差数列{an}中,若a1004+a1005+a1006=3,则该数列的前2009项的和为( )A.3000B.2009C.2008D.2007” 主要考查您对等差数列的前n项和
等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
等差数列的前n项和的公式:
(1),(2),(3),(4)
当d≠0时,Sn是关于n的二次函数且常数项为0,{an}为等差数列,反之不能。
等差数列的前n项和的有关性质:
(1),…成等差数列;
(2){an}有2k项时,=kd;
(3){an}有2k+1项时,S奇=(k+1)ak+1=(k+1)a平, S偶=kak+1=ka平,S奇:S偶=(k+1):k,S奇-S偶=ak+1=a平;
解决等差数列问题常用技巧:
1、等差数列中,已知5个元素:a1,an,n,d, S中的任意3个,便可求出其余2个,即知3求2。
为减少运算量,要注意设元的技巧,如奇数个成等差,可设为…,a-2d,a-d,a,a+d,a+2d,…,偶数个成等差,可设为…,a-3d,a-d,a+d,a+3d,…
2、等差数列{an}中,(1)若ap=q,aq=p,则列方程组可得:d=-1,a1=p+q-1,ap+q=0,S=-(p+q);
(2)当Sp=Sq时(p≠q),数形结合分析可得Sn中最大,Sp+q=0,此时公差d<0。
与“在等差数列{an}中,若a1004+a1005+a1006=3,则该数列的前2009...”考查相似的试题有: