本试题 “已知数列{an}的前n项和为Sn,a1=3,当n≥2,n∈N*时,Sn-1是an与-3的等差中项,(1)求a2,a3,a4;(2)求数列{an}的通项公式.” 主要考查您对等差中项
等比数列的通项公式
等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
等差中项:
若a,A,b成等差数列,那么A叫做a与b的等差中项,且2A=a+b,即,反之,若,则a,A,b成等差数列。
等差数列中相邻三项之间存在如下关系:
(1) 反之,若数列中相邻三项之间存在如下关系:则该数列是等差数列,
(2) 若a,A,b成等差数列,那么 2A=a+b,A-a =b -A,a-A =A -b都是等价的.
等比数列的通项公式:
an=a1qn-1,q≠0,n∈N*。
等比数列的通项公式的理解:
①在已知a1和q的前提下,利用通项公式可求出等比数列中的任意一项;
②在已知等比数列中任意两项的前提下,使用可求等比数列中任何一项;
③用函数的观点看等比数列的通项,等比数列{an}的通项公式,可以改写为.当q>o,且q≠1时,y=qx是一个指数函数,而是一个不为0的常数与指数函数的积,因此等比数列{an}的图象是函数的图象上的一群孤立的点;
④通项公式亦可用以下方法推导出来:
将以上(n一1)个等式相乘,便可得到
⑤用方程的观点看通项公式.在an,q,a1,n中,知三求一。
与“已知数列{an}的前n项和为Sn,a1=3,当n≥2,n∈N*时,Sn-1是an...”考查相似的试题有: