返回

初中三年级数学

首页
  • 解答题
    如图,已知点D为等腰直角△ABC内一点,∠CAD=∠CBD=15°,E为AD延长线上的一点,且CE=CA。
    (1)求证:DE平分∠BDC;
    (2)若点M在DE上,且DC=DM,求证:ME=BD。

    本题信息:2011年山东省中考真题数学解答题难度极难 来源:叶新丽
  • 本题答案
    查看答案
本试题 “如图,已知点D为等腰直角△ABC内一点,∠CAD=∠CBD=15°,E为AD延长线上的一点,且CE=CA。(1)求证:DE平分∠BDC;(2)若点M在DE上,且DC=DM,求证:ME=BD。” 主要考查您对

角平分线的定义

全等三角形的性质

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 角平分线的定义
  • 全等三角形的性质
角的平分线的定义
一条射线把一个角分成两个相等的角,这条射线叫做这个角的平分线。

角平分线的性质:
角平分线上的点,到角两边的距离相等
定理:
角平分线上的任意一点,到角两边的距离相等。垂直于两边为最短距离。角平分线能得到相同的两个角。三角形三条角平分线相交于一点,并且这一点到三边的距离相等。
逆定理:
到角两边的距离相等的点在角平分线上。


全等三角形:
两个全等的三角形,而该两个三角形的三条边及三个角都对应地相等。全等三角形是几何中全等的一种。根据全等转换,两个全等三角形可以是平移、旋转、轴对称,或重叠等。当两个三角形的对应边及角都完全相对时,该两个三角形就是全等三角形。正常来说,验证两个全等三角形时都以三个相等部分来验证,最后便能得出结果。
全等三角形的对应边相等,对应角相等。
①全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;
②全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角;
③有公共边的,公共边一定是对应边;
④有公共角的,角一定是对应角;
⑤有对顶角的,对顶角一定是对应角。

全等三角形的性质:
1.全等三角形的对应角相等。
2.全等三角形的对应边相等。
3.全等三角形的对应边上的高对应相等。
4.全等三角形的对应角的角平分线相等。
5.全等三角形的对应边上的中线相等。
6.全等三角形面积相等。
7.全等三角形周长相等。
8.全等三角形的对应角的三角函数值相等。



发现相似题
与“如图,已知点D为等腰直角△ABC内一点,∠CAD=∠CBD=15°,E为AD延...”考查相似的试题有: