返回

高中数学

首页
  • 解答题
    已知函数f(x)=x2+2x•tanθ-1,x∈[-1,
    3
    ],θ∈(-
    π
    2
    π
    2
    )

    (1)当θ=-
    π
    6
    时,求函数f(x)的最大值与最小值;
    (2)求θ的取值范围,使y=f(x)在区间[-1,
    3
    ]
    上是单调函数.
    本题信息:2002年上海数学解答题难度较难 来源:未知
  • 本题答案
    查看答案
本试题 “已知函数f(x)=x2+2x•tanθ-1,x∈[-1,3],θ∈(-π2,π2).(1)当θ=-π6时,求函数f(x)的最大值与最小值;(2)求θ的取值范围,使y=f(x)在区间[-1,3]上是...” 主要考查您对

函数的单调性、最值

正切、余切函数的图象与性质(定义域、值域、单调性、奇偶性等)

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 函数的单调性、最值
  • 正切、余切函数的图象与性质(定义域、值域、单调性、奇偶性等)

单调性的定义:

1、对于给定区间D上的函数f(x),若对于任意x1,x2∈D,当x1<x2时,都有f(x1)<f(x2),则称f(x)是区间上的增函数;当x1<x2时,都有f(x1)>f(x2),则称f(x)是区间D上的减函数。

2、如果函数y=f(x)在区间上是增函数或减函数,就说函数y=f(x)在区间D上具有(严格的)单调性,区间D称为函数f(x)的单调区间。如果函数y=f(x)在区间D上是增函数或减函数,区间D称为函数f(x)的单调增或减区间 
 
3、最值的定义:
最大值:一般地,设函数y=f(x)的定义域为I,如果存在实数M,满足: ①对于任意的x∈I,都有f(x)≤M;②存在x0∈I,使得f(x0)=M;那么,称M是f(x)的最大值.
最小值:一般地,设函数y=f(x)的定义域为I,如果存在实数M,满足: ①对于任意的x∈I,都有f(x)≥M;②存在x0∈I,使得f(x0)=M;那么,称M是f(x)的最小值


判断函数f(x)在区间D上的单调性的方法

(1)定义法:其步骤是:
①任取x1,x2∈D,且x1<x2;
②作差f(x1)-f(x2)或作商 ,并变形;
③判定f(x1)-f(x2)的符号,或比较 与1的大小;
④根据定义作出结论。
(2)复合法:利用基本函数的单调性的复合。
(3)图象法:即观察函数在区间D上部分的图象从左往右看是上升的还是下降的。


正切函数的图像:

余切函数的图像:



正切函数的性质:

(1)定义域:
(2)值域是R,在上面定义域上无最大值也无最小值;
(3)周期性:是周期函数且周期是π,它与直线y=a的两个相邻交点之间的距离是一个周期π;
(4)奇偶性:是奇函数,对称中心是(k∈Z),无对称轴;
(5)单调性:正切函数在开区间内都是增函数。但要注意在整个定义域上不具有单调性。

余切函数的性质:

(1)定义域:{x|x≠kπ,k∈Z}
(2)值域:实数集R;
(3)周期性:是周期函数,周期为kπ(k∈Z且k≠0),最小正周期T=π
(4)奇偶性:奇函数,图像关于(,0)(k∈z)对称,实际上所有的零点都是它的对称中心
(5)单调性:在每一个开区间(kπ,(k+1)π),(k∈Z)上都是减函数,在整个定义域上不具有单调性