返回

高中数学

首页
  • 解答题
    某车间有200名工人,要完成6000件产品的生产任务,每件产品由3个A型零件和1个B型零件配套组成.每个工人每小时能加工5个A型零件或者1个B型零件,现在把这些工人分成两组同时工作(分组后人数不再进行调整),每组加工同一种型号的零件.设加工A型零件的工人人数为x名(x∈N*).
    (1)设完成A型零件加工所需时间为f(x)小时,完成B型零件加工所需时间为g(x)小时,写出f(x),g(x)的解析式;
    (2)当A、B两种零件全部加工完成,就算完成工作.全部完成工作所需时间为H(x)小时,写出H(x)的解析式;
    (3)为了在最短时间内完成工作,x应取何值?
    本题信息:数学解答题难度一般 来源:未知
  • 本题答案
    查看答案
本试题 “某车间有200名工人,要完成6000件产品的生产任务,每件产品由3个A型零件和1个B型零件配套组成.每个工人每小时能加工5个A型零件或者1个B型零件,现在把这些工...” 主要考查您对

函数的单调性、最值

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 函数的单调性、最值

单调性的定义:

1、对于给定区间D上的函数f(x),若对于任意x1,x2∈D,当x1<x2时,都有f(x1)<f(x2),则称f(x)是区间上的增函数;当x1<x2时,都有f(x1)>f(x2),则称f(x)是区间D上的减函数。

2、如果函数y=f(x)在区间上是增函数或减函数,就说函数y=f(x)在区间D上具有(严格的)单调性,区间D称为函数f(x)的单调区间。如果函数y=f(x)在区间D上是增函数或减函数,区间D称为函数f(x)的单调增或减区间 
 
3、最值的定义:
最大值:一般地,设函数y=f(x)的定义域为I,如果存在实数M,满足: ①对于任意的x∈I,都有f(x)≤M;②存在x0∈I,使得f(x0)=M;那么,称M是f(x)的最大值.
最小值:一般地,设函数y=f(x)的定义域为I,如果存在实数M,满足: ①对于任意的x∈I,都有f(x)≥M;②存在x0∈I,使得f(x0)=M;那么,称M是f(x)的最小值


判断函数f(x)在区间D上的单调性的方法

(1)定义法:其步骤是:
①任取x1,x2∈D,且x1<x2;
②作差f(x1)-f(x2)或作商 ,并变形;
③判定f(x1)-f(x2)的符号,或比较 与1的大小;
④根据定义作出结论。
(2)复合法:利用基本函数的单调性的复合。
(3)图象法:即观察函数在区间D上部分的图象从左往右看是上升的还是下降的。


发现相似题
与“某车间有200名工人,要完成6000件产品的生产任务,每件产品由...”考查相似的试题有: