根的判别式:一元二次方程ax
2+bx+c=0(a≠0)的根的判别式△=b
2-4ac。
定理1 ax
2+bx+c=0(a≠0)中,△>0
方程有两个不等实数根;
定理2 ax
2+bx+c=0(a≠0)中,△=0
方程有两个相等实数根;
定理3 ax
2+bx+c=0(a≠0)中,△<0
方程没有实数根。
根的判别式逆用(注意:根据课本“反过来也成立”)得到三个定理。
定理4 ax
2+bx+c=0(a≠0)中,方程有两个不等实数根
△>0;
定理5 ax
2+bx+c=0(a≠0)中,方程有两个相等实数根
△=0;
定理6 ax
2+bx+c=0(a≠0)中,方程没有实数根
△<0。
注意:(1)再次强调:根的判别式是指△=b
2-4ac。
(2)使用判别式之前一定要先把方程变化为一般形式,以便正确找出a、b、c的值。
(3)如果说方程,即应当包括有两个不等实根或有两相等实根两种情况,此时b
2-4ac≥0切勿丢掉等号。
(4)根的判别式b
2-4ac的使用条件,是在一元二次方程中,而非别的方程中,因此,要注意隐含条件a≠0。
根的判别式有以下应用:①不解一元二次方程,判断根的情况。
②根据方程根的情况,确定待定系数的取值范围。
③证明字母系数方程有实数根或无实数根。
④应用根的判别式判断三角形的形状。
⑤判断当字母的值为何值时,二次三项是完全平方式。
⑥可以判断抛物线与直线有无公共点。
⑦可以判断抛物线与x轴有几个交点。
⑧利用根的判别式解有关抛物线
(△>0)与x轴两交点间的距离的问题。
圆和圆的位置关系: 如果两个圆没有公共点,那么就说这两个圆相离,相离分为外离和内含两种。
如果两个圆只有一个公共点,那么就说这两个圆相切,相切分为外切和内切两种。
如果两个圆有两个公共点,那么就说这两个圆相交。
圆心距:两圆圆心的距离叫做两圆的圆心距。
圆和圆位置关系的性质与判定:
设两圆的半径分别为R和r,圆心距为d,那么
两圆外离d>R+r(没有交点)
两圆外切d=R+r (有一个交点,叫切点)
两圆相交R-r<d<R+r(R≥r)(有两个交点)
两圆内切d=R-r(R>r) (有一个交点,叫切点)
两圆内含d<R-r(R>r)(没有交点)
两圆相切的性质:
(1)连心线:两圆圆心的连线。
(2)两圆相切的性质:相切两圆的连心线必过切点,即两圆圆心、切点三点在一条直线上。