返回

高中二年级数学

首页
  • 单选题
    已知函数y=f(x)是定义在实数集R上的奇函数,f′(x)是f(x)的导函数,且当x>0,f(x)+xf′(x)>0,设a=(log
    1
    2
    4)f(log
    1
    2
    4),b=
    2
    f(
    2
    ),c=(lg
    1
    5
    )f(lg
    1
    5
    ),则a,b,c的大小关系是(  )
    A.c>a>bB.c>b>aC.a>b>cD.a>c>b

    本题信息:数学单选题难度一般 来源:未知
  • 本题答案
    查看答案
本试题 “已知函数y=f(x)是定义在实数集R上的奇函数,f′(x)是f(x)的导函数,且当x>0,f(x)+xf′(x)>0,设a=(log124)f(log124),b=2f(2),c=(lg15)f...” 主要考查您对

导数的运算

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 导数的运算

常见函数的导数:

(1)C′=0 ;(2);(3);(4);(5);(6);(7);(8)

导数的四则运算: 

(1)和差:
(2)积:
(3)商:

复合函数的导数:

运算法则复合函数导数的运算法则为:


复合函数的求导的方法和步骤

(1)分清复合函数的复合关系,选好中间变量;
(2)运用复合函数求导法则求复合函数的导数,注意分清每次是哪个变量对哪个变量求导数;
(3)根据基本函数的导数公式及导数的运算法则求出各函数的导数,并把中间变量换成自变量的函数。
求复合函数的导数一定要抓住“中间变量”这一关键环节,然后应用法则,由外向里一层层求导,注意不要漏层。