返回

高中三年级数学

首页
  • 解答题
    (选做题)已知曲线C1的参数方程是,以坐标原点为极点,x轴的正半轴为极轴建立坐标系,曲线C2的坐标系方程是ρ=2,正方形ABCD的顶点都在C2上,且A,B,C,D依逆时针次序排列,点A的极坐标为
    (1)求点A,B,C,D的直角坐标;
    (2)设P为C1上任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的取值范围。
    本题信息:2012年高考真题数学解答题难度较难 来源:刘佩
  • 本题答案
    查看答案
本试题 “(选做题)已知曲线C1的参数方程是,以坐标原点为极点,x轴的正半轴为极轴建立坐标系,曲线C2的坐标系方程是ρ=2,正方形ABCD的顶点都在C2上,且A,B,C,D依...” 主要考查您对

正弦、余弦函数的图象与性质(定义域、值域、单调性、奇偶性等)

简单曲线的极坐标方程

椭圆的参数方程

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 正弦、余弦函数的图象与性质(定义域、值域、单调性、奇偶性等)
  • 简单曲线的极坐标方程
  • 椭圆的参数方程

正弦函数和余弦函数的图象:正弦函数y=sinx(x∈R)和余弦函数y=cosx(x∈R)的图象分别叫做正弦曲线和余弦曲线,

1.正弦函数

2.余弦函数

函数图像的性质
正弦、余弦函数图象的性质:

由上表知,正弦与余弦函数的定义域都是R,值域都是[-1,1],对y=sinx,当时,y取最大值1,
时,y取最小值-1;对y=cosx,当x=2kπ(k∈Z)时,y取最大值1,当x=2kπ+π(k∈Z)时,y取最小值-1。




正弦、余弦函数图象的性质:


由上表知,正弦与余弦函数的定义域都是R,值域都是[-1,1],对y=sinx,当时,y取最大值1,
时,y取最小值-1;对y=cosx,当x=2kπ(k∈Z)时,y取最大值1,当x=2kπ+π(k∈Z)时,y取最小值-1。


曲线的极坐标方程的定义:

一般地,在极坐标系中,如果平面曲线C上任意一点的极坐标中至少有一个满足方程f(ρ,θ)=0,并且坐标适合方程f(ρ,θ)=0的点都在曲线上,那么方程f(ρ,θ)=0叫做曲线C的极坐标方程。


求曲线的极坐标方程的常用方法:

直译法、待定系数法、相关点法等。

圆心为(α,β)(a>0),半径为a的圆的极坐标方程为,此圆过极点O。

直线的极坐标方程:

直线的极坐标方程是ρ=1/(2cosθ+4sinθ)。

圆的极坐标方程:


这是圆在极坐标系下的一般方程。
 
过极点且半径为r的圆方程:
 
 

椭圆的参数方程:

椭圆的参数方程是,θ∈[0,2π)。


椭圆的参数方程的理解:

如图,以原点为圆心,分别以a,b(a>b>0)为半径作两个圆,点B是大圆半径OA与小圆的交点,过点A作AN⊥Ox,垂足为N,过点B作BM⊥AN,垂足为M,求当半径OA绕点O旋转时,点M的横坐标与点A的横坐标相同,点M的纵坐标与点B的纵坐标相同.而A、B的坐标可以通过引进参数建立联系.设,由已知得,即为点M的轨迹参数方程,消去参数得,即为点M的轨迹普通方程。
(1)参数方程,是椭圆的参数方程;
(2)在椭圆的参数方程中,常数a、b分别是椭圆的长半轴长和短半轴长.a>b,称为离心角,规定参数的取值范围是[0,2π);
(3)焦点在y轴的参数方程为