本试题 “设等差数列an的前n项和 为Sn,则S4,S8-S4S12-S8,S16-S12成等差数列.类比以上结论有:设等比数列bn的前n项积为Tn,则T4,______,T16T12成等比数列.” 主要考查您对等比数列的定义及性质
等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
等比数列的定义:
一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列,这个常数叫做公比,公比通常用字母q表示(q≠0)。
等比数列的性质:
在等比数列{an}中,有
(1)若m+n=p+q,m,n,p,q∈N*,则aman=apaq;当m+n=2p时,aman=ap2;
(2)若m,n∈N*,则am=anqm-n;
(3)若公比为q,则{}是以为公比的等比数列;
(4)下标成等差数列的项构成等比数列;
(5)
1)若a1>0,q>1,则{an}为递增数列;
2)a1<0,q>1, 则{an}为递减数列;
3)a1>0,0<q<1,则{an}为递减数列;
4)a1<0, 0<q<1, 则{an}为递增数列;
5)q<0,则{an}为摆动数列;若q=1,则{an}为常数列。
如何证明一个数列是等比数列:
证明一个数列是等比数列,只需证明是一个与n无关的常数即可(或an2=an-1an+1)。
与“设等差数列an的前n项和 为Sn,则S4,S8-S4S12-S8,S16-S12成...”考查相似的试题有: