返回

高中数学

首页
  • 解答题
    已知函数f(x)=x2+
    2
    x
    -4,(x>0)
    ,g(x)和f(x)的图象关于原点对称.
    (I)求函数g(x)的解析式;
    (II)试判断g(x)在(-1,0)上的单调性,并给予证明;
    (III)将函数g(x)的图象向右平移a(a>0)个单位,再向下平移b(b>0)个单位,若对于任意的a,平移后gf(x)和f(x)的图象最多只有一个交点,求b的最小值.
    本题信息:数学解答题难度较难 来源:未知
  • 本题答案
    查看答案
本试题 “已知函数f(x)=x2+2x-4,(x>0),g(x)和f(x)的图象关于原点对称.(I)求函数g(x)的解析式;(II)试判断g(x)在(-1,0)上的单调性,并给予证明;...” 主要考查您对

函数图象

函数解析式的求解及其常用方法

函数的单调性与导数的关系

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 函数图象
  • 函数解析式的求解及其常用方法
  • 函数的单调性与导数的关系

定义:

点集{(x,y)|y=f(x)}叫做函数y=f(x)的图像。


函数图像的画法:

(1)描点法:
一般我们选择一些特殊点(包括区间端点、最值点、极值点、函数图像与坐标轴的交点等)。
(2)用函数的性质画图
一般我们选择先确定函数的定义域,再看函数是否具有周期性和对称性、奇偶性,这样我们就可以只画出部分图像,之后根据性质直接得到其余部分的图像,然后判断单调性,确定特殊点或渐近线,进而得到函数的大致图像。
(3)通过图像变换画图
(一)平移变化:
Ⅰ水平平移:函数y=f(x+a)的图像可以把函数y=f(x)的图像沿x轴方向向左(a>0)或向右(a<0)平移|a|个单位即可得到;
Ⅱ竖直平移:函数y=f(x+a)的图像可以把函数y=f(x)的图像沿x轴方向向上(a>0)或向下(a<0)平移|a|个单位即可得到.
(二)对称变换:
Ⅰ函数y=f(-x)的图像可以将函数y=f(x)的图像关于y轴对称即可得到;
Ⅱ函数y=-f(x)的图像可以将函数y=f(x)的图像关于x轴对称即可得到;
Ⅲ函数y=-f(-x)的图像可以将函数y=f(x)的图像关于原点对称即可得到;
Ⅳ函数y=f-1(x)的图像可以将函数y=f(x)的图像关于直线y=x对称得到.

函数图像的判断:

这里主要是抽象函数的图像,借助函数的对称性、周期性及单调性确定函数的图像;另外借助导数,就是函数在某点处的切线斜率的变化,体现在函数的图像上就是增长的快还是慢来确定函数的图像。


常用结论:

(1)若函数y=f(x)定义域内任一x的值都满足f(a+x)=f(b-x),则y=f(x)的图像关于直线成轴对称图形;特别地,y=f(x)满足恒成立,则y=f(x)的图像关于直线x=a成轴对称图形;
(2)函数y=f(x)的图像关于直线x=a及x=b对称,则y=f(x)是周期函数,且2|b-a|是它的一个周期。 
 


函数解析式的常用求解方法:

(1)待定系数法:(已知函数类型如:一次、二次函数、反比例函数等):若已知f(x)的结构时,可设出含参数的表达式,再根据已知条件,列方程或方程组,从而求出待定的参数,求得f(x)的表达式。待定系数法是一种重要的数学方法,它只适用于已知所求函数的类型求其解析式。
(2)换元法(注意新元的取值范围):已知f(g(x))的表达式,欲求f(x),我们常设t=g(x),从而求得,然后代入f(g(x))的表达式,从而得到f(t)的表达式,即为f(x)的表达式。
(3)配凑法(整体代换法):若已知f(g(x))的表达式,欲求f(x)的表达式,用换元法有困难时,(如g(x)不存在反函数)可把g(x)看成一个整体,把右边变为由g(x)组成的式子,再换元求出f(x)的式子。
(4)消元法(如自变量互为倒数、已知f(x)为奇函数且g(x)为偶函数等):若已知以函数为元的方程形式,若能设法构造另一个方程,组成方程组,再解这个方程组,求出函数元,称这个方法为消元法。
(5)赋值法(特殊值代入法):在求某些函数的表达式或求某些函数值时,有时把已知条件中的某些变量赋值,使问题简单明了,从而易于求出函数的表达式。


导数和函数的单调性的关系:

(1)若f′(x)>0在(a,b)上恒成立,则f(x)在(a,b)上是增函数,f′(x)>0的解集与定义域的交集的对应区间为增区间;
(2)若f′(x)<0在(a,b)上恒成立,则f(x)在(a,b)上是减函数,f′(x)<0的解集与定义域的交集的对应区间为减区间。


利用导数求解多项式函数单调性的一般步骤:

①确定f(x)的定义域;
②计算导数f′(x);
③求出f′(x)=0的根;
④用f′(x)=0的根将f(x)的定义域分成若干个区间,列表考察这若干个区间内f′(x)的符号,进而确定f(x)的单调区间:f′(x)>0,则f(x)在对应区间上是增函数,对应区间为增区间;f′(x)<0,则f(x)在对应区间上是减函数,对应区间为减区间。

函数的导数和函数的单调性关系特别提醒:

若在某区间上有有限个点使f′(x)=0,在其余的点恒有f′(x)>0,则f(x)仍为增函数(减函数的情形完全类似).即在区间内f′(x)>0是f(x)在此区间上为增函数的充分条件,而不是必要条件。