本试题 “如果两圆的直径是方程x2-10x+24=0的两根,两圆圆心距为5,则这两个圆的公切线共有( )A.1条B.2条C.3条D.4条” 主要考查您对一元二次方程的解法
圆和圆的位置关系(圆和圆的相离,圆与圆的相交,圆与圆的相切)
等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
韦达定理:
一元二次方程根与系数的关系(以下两个公式很重要,经常在考试中运用到)
一般式:ax2+bx+c=0的两个根x1和x2关系:
x1+x2= -b/a
x1·x2=c/a
圆和圆位置关系的性质与判定:
设两圆的半径分别为R和r,圆心距为d,那么
两圆外离d>R+r(没有交点)
两圆外切d=R+r (有一个交点,叫切点)
两圆相交R-r<d<R+r(R≥r)(有两个交点)
两圆内切d=R-r(R>r) (有一个交点,叫切点)
两圆内含d<R-r(R>r)(没有交点)
两圆相切的性质:
(1)连心线:两圆圆心的连线。
(2)两圆相切的性质:相切两圆的连心线必过切点,即两圆圆心、切点三点在一条直线上。
与“如果两圆的直径是方程x2-10x+24=0的两根,两圆圆心距为5,则...”考查相似的试题有: