返回

高中三年级数学

首页
  • 解答题
    定义:两个连续函数(图象不间断)f(x),g(x)在区间[a,b]上都有意义,我们称函数|f(x)+g(x)|在[a,b]上的最大值叫做函数f(x)与g(x)在区间[a,b]上的“绝对和”.
    (1)试求函数f(x)=x2与g(x)=x(x+2)(x-4)在闭区间[-2,2]上的“绝对和”.
    (2)设hm(x)=-4x+m及f(x)=x2都是定义在闭区间[1,3]上,记hm(x)与f(x)的“绝对和”为Dm,如果D(m)的最小值是D(m0),则称f(x)可用hm0(x)“替代”,试求m0的值,使f(x)可用hm0(x)“替代”.
    本题信息:数学解答题难度较难 来源:未知
  • 本题答案
    查看答案
本试题 “定义:两个连续函数(图象不间断)f(x),g(x)在区间[a,b]上都有意义,我们称函数|f(x)+g(x)|在[a,b]上的最大值叫做函数f(x)与g(x)在区间[a,b]...” 主要考查您对

函数的单调性与导数的关系

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 函数的单调性与导数的关系

导数和函数的单调性的关系:

(1)若f′(x)>0在(a,b)上恒成立,则f(x)在(a,b)上是增函数,f′(x)>0的解集与定义域的交集的对应区间为增区间;
(2)若f′(x)<0在(a,b)上恒成立,则f(x)在(a,b)上是减函数,f′(x)<0的解集与定义域的交集的对应区间为减区间。


利用导数求解多项式函数单调性的一般步骤:

①确定f(x)的定义域;
②计算导数f′(x);
③求出f′(x)=0的根;
④用f′(x)=0的根将f(x)的定义域分成若干个区间,列表考察这若干个区间内f′(x)的符号,进而确定f(x)的单调区间:f′(x)>0,则f(x)在对应区间上是增函数,对应区间为增区间;f′(x)<0,则f(x)在对应区间上是减函数,对应区间为减区间。

函数的导数和函数的单调性关系特别提醒:

若在某区间上有有限个点使f′(x)=0,在其余的点恒有f′(x)>0,则f(x)仍为增函数(减函数的情形完全类似).即在区间内f′(x)>0是f(x)在此区间上为增函数的充分条件,而不是必要条件。