返回

高中三年级数学

首页
  • 解答题
    如图,过抛物线y2=2px(p>0)上一定点P(x0,y0)(y>0),作两条直线分别交抛物线于A(x1
    y1),B(x2,y2),
    (Ⅰ)求该抛物线上纵坐标为的点到其焦点F的距离;
    (Ⅱ)当PA与PB的斜率存在且倾斜角互补时,求的值,并证明直线AB的斜率是非零常数。

    本题信息:2004年北京高考真题数学解答题难度较难 来源:张玲玲
  • 本题答案
    查看答案
本试题 “如图,过抛物线y2=2px(p>0)上一定点P(x0,y0)(y>0),作两条直线分别交抛物线于A(x1,y1),B(x2,y2),(Ⅰ)求该抛物线上纵坐标为的点到其焦点F的...” 主要考查您对

直线的倾斜角与斜率

抛物线的定义

直线与抛物线的应用

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 直线的倾斜角与斜率
  • 抛物线的定义
  • 直线与抛物线的应用

直线的倾斜角的定义:

x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α<180°。

直线的斜率的定义:

倾斜角不是90°的直线,它的倾斜角的正切值叫做这条直线的斜率。直线的斜率常用k表示。即k=tanα。斜率反映直线与x轴的倾斜程度。


直线斜率的性质:

时,k≥0;当时,k<0;当时,k不存在。


直线倾斜角的理解:

(1)注意“两个方向”:直线向上的方向、x轴的正方向;

(2)规定当直线和x轴平行或重合时,它的倾斜角为0度。

直线倾斜角的意义:

①直线的倾斜角,体现了直线对x轴正向的倾斜程度;
②在平面直角坐标系中,每一条直线都有一个确定的倾斜角;
③倾斜角相同,未必表示同一条直线。

直线斜率的理解:

每条直线都有倾斜角,但每条直线不一定都有斜率, 斜率不存在;当 也逐渐增大; 且逐渐增大。


抛物线的定义:

平面内与一个定点F和一条定直线l(F∈l)的距离相等的点的轨迹叫做抛物线,定点F叫做抛物线的焦点,定直线l叫做抛物线的准线,抛物线的定义也可以说成是:平面内与一个定点F和一条定直线l的距离的比等于1的点的轨迹.

抛物线中的有关概念:

定义 图形
抛物线的弦、焦点弦 连结抛物线上任意两点的线段,叫做抛物线的弦.
过抛物线焦点的弦,叫做焦点弦
抛物线的通径和焦参数 过焦点且垂直于抛物线的弦叫做抛物线的通径,通径长度的一半叫做抛物线的焦参数
焦点半径 抛物线上一点P和焦点的连线,叫做点P的焦点半径或焦半径
抛物线的焦准距 抛物线的焦点和它的准线间的距离,叫做焦准距,依据定义,显然有KO=OF即焦准距等于通径长的一半,焦准距用常数p表示

抛物线的规律总结:

①在抛物线的定义中的定点F不在直线l上,否则动点的轨迹就是过点F且垂直于直线l的一条直线,而不再是抛物线;
②抛物线的定义中指明了抛物线上的点到焦点的距离与到准线的距离相等,故在一些问题中,二者可以互相转化,这是利用抛物线定义解题的关键.


设直线l的方程为:Ax+By+C=0(A、B不同时为零),抛物线的方程为y2=2px(p>0),将直线的方程代入抛物线的方程,消去y(或x) 得到一元二次方程,进而应用根与系数的关系解题。

直线与抛物线的位置关系:

直线和抛物线的位置关系,可通过直线方程与抛物线方程组成的方程组的实数解的个数来确定,同时注意过焦点的弦的一些性质,如:


发现相似题
与“如图,过抛物线y2=2px(p>0)上一定点P(x0,y0)(y>0),...”考查相似的试题有: