返回

高中数学

首页
  • 单选题
    向高为H的水瓶中注水,注满为止.如果注水量V与水深h的函数关系如图,那么水瓶的形状是图中的(  )
    A.
    魔方格
    B.
    魔方格
    C.
    魔方格
    D.
    魔方格
    魔方格

    本题信息:数学单选题难度一般 来源:未知
  • 本题答案
    查看答案
本试题 “向高为H的水瓶中注水,注满为止.如果注水量V与水深h的函数关系如图,那么水瓶的形状是图中的( ) A. B. C. D.” 主要考查您对

函数零点的判定定理

柱、锥、台、球的结构特征

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 函数零点的判定定理
  • 柱、锥、台、球的结构特征

函数零点存在性定理:

一般地,如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a).f(b)<o,那么函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=O,这个c也就是f(x)=0的根.特别提醒:(1)根据该定理,能确定f(x)在(a,b)内有零点,但零点不一定唯一.
 (2)并不是所有的零点都可以用该定理来确定,也可以说不满足该定理的条件,并不能说明函数在(a,b)上没有零点,例如,函数f(x) =x2 -3x +2有f(0)·f(3)>0,但函数f(x)在区间(0,3)上有两个零点.
 (3)若f(x)在[a,b]上的图象是连续不断的,且是单调函数,f(a).f(b)<0,则fx)在(a,b)上有唯一的零点.


函数零点个数的判断方法:

(1)几何法:对于不能用求根公式的方程,可以将它与函数y =f(x)的图象联系起来,并利用函数的性质找出零点.
特别提醒:①“方程的根”与“函数的零点”尽管有密切联系,但不能混为一谈,如方程x2-2x +1 =0在[0,2]上有两个等根,而函数f(x)=x2-2x +1在[0,2]上只有一个零点
                ②函数的零点是实数而不是数轴上的点.
(2)代数法:求方程f(x)=0的实数根.


棱柱:

(1)概念:如果一个多面体有两个面互相平行,而其余每相邻两个面的交线互相平行。这样的多面体叫做棱柱。棱柱中两个互相平行的面叫棱柱的底面,其余各个面都叫棱柱的侧面,两个侧棱的公共边叫做棱柱的侧棱,棱柱中两个底面间的距离叫棱柱的高。
(2)分类:①按侧棱是否与底面垂直分类:分为斜棱柱和直棱柱。侧棱不垂直于底面的棱柱叫斜棱柱,侧棱垂直于底面的棱柱叫直棱柱;
②按底面边数的多少分类:底面分别为三角形,四边形,五边形…、分别称为三棱柱,四棱柱,五棱柱,…

棱锥:

(1)概念:如果一个多面体的一个面是多边形,其余各个面是有一个公共顶点的三角形,那么这个多面体叫棱锥。在棱锥中有公共顶点的各三角形叫做棱锥的侧面,棱锥中这个多边形叫做棱锥的底面,棱锥中相邻两个侧面的交线叫做棱锥的侧棱,棱锥中各侧棱的公共顶点叫棱锥的顶点。棱锥顶点到底面的距离叫棱锥的高,过棱锥不相邻的两条侧棱的截面叫棱锥的对角面。
(2)分类:按照棱锥底面多边形的边数可将棱锥分为:三棱锥、四棱锥、五棱锥…
(3)正棱锥的概念:如果一个棱锥的底面是正多边形,且顶点在底面的射影是底面的中心,这样的棱锥叫正棱锥。

棱台:

用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分叫做棱台,原棱锥的底面和截面分别叫做棱台的下底面和上底面。

圆柱的概念:

以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体。
旋转轴叫做圆柱的轴,垂直于轴的边旋转而成的圆面叫做圆柱的底面,平行于轴的边旋转而成的曲面叫做圆柱的侧面;无论旋转到什么位置,不垂直于轴的边叫做圆柱侧面的母线。

圆锥的概念

以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体;

圆台的概念:

用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分; 

球的定义:

第一定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的旋转体叫球体,简称球。
半圆的圆心叫做球的球心,半圆的半径叫做球的半径,半圆的直径叫做球的直径。
第二定义:球面是空间中与定点的距离等于定长的所有点的集合。

球的截面与大圆小圆:

截面:用一个平面去截一个球,截面是圆面;
大圆:过球心的截面圆叫大圆,大圆是所有球的截面中半径最大的圆。
球面上任意两点间最短的球面距离:是过这两点大圆的劣弧长;
小圆:不过球心的截面圆叫小圆。


棱柱的性质:

①棱柱的各个侧面都是平行四边形,所有的侧棱都相等,直棱柱的各个侧面都是矩形,正棱柱的各个侧面都是全等的矩形;
②与底面平行的截面是与底面对应边互相平行的全等多边形;
③过棱柱不相邻的两条侧棱的截面都是平行四边形。

棱锥的性质:

如果棱锥被平行于底面的平面所截,那么所得的截面与底面相似,截面面积与底面面积的比等于顶点至截面距离与棱锥高的平方比。

正棱锥性质:

①正棱锥的各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高(叫侧高)也相等;
②正棱锥的高、斜高、斜高在底面的射影、侧棱、底面的外接圆的半径R、底面的半边长可组成四个直角三角形。

圆柱的几何特征:

①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。

圆锥的几何特征:

①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。 

圆台的几何特征:

①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。

球的截面的性质

性质1:球心和截面圆心的连线垂直于截面;
性质2:球心到截面的距离d与球的半径R及截面的半径r有如下关系:r2=R2-d2
 
 


发现相似题
与“向高为H的水瓶中注水,注满为止.如果注水量V与水深h的函数关...”考查相似的试题有: