本试题 “将的图象按向量平移,则平移后所得图象的解析式为A.B.C.D.” 主要考查您对函数y=Asin(wx+φ)的图象与性质
向量平移
等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
函数的图象:
1、振幅、周期、频率、相位、初相:函数,表示一个振动量时,A表示这个振动的振幅,往返一次所需的时间T=,称为这个振动的周期,
单位时间内往返振动的次数称为振动的频率,称为相位,x=0时的相位叫初相。
2、用“五点法”作函数的简图主要通过变量代换,设X=由X取0,来找出相应的x的值,通过列表,计算得出五点的坐标,描点后得出图象。
3、函数+K的图象与y=sinx的图象的关系:
把y=sinx的图象纵坐标不变,横坐标向左(φ>0)或向右(φ<0),y=sin(x+φ)
把y=sin(x+φ)的图象纵坐标不变,横坐标变为原来的,y=sin(ωx+φ)
把y=sin(ωx+φ)的图象横坐标不变,纵坐标变为原来的A倍,y=Asin(x+φ)
把y=Asin(x+φ)的图象横坐标不变,纵坐标向上(k>0)或向下(k<0),y=Asin(x+φ)+K;
若由y=sin(ωx)得到y=sin(ωx+φ)的图象,则向左或向右平移个单位。
函数y=Asin(x+φ)的性质:
1、y=Asin(x+φ)的周期为;
2、y=Asin(x+φ)的的对称轴方程是,对称中心(kπ,0)。
点的平移公式:
;
注:图形F上的任意一点P(x,y)在平移后图形F′上的对应点为P′(x′,y′),且的坐标为(h,k)。
“按向量平移”的几个结论:
(1)点P(x,y)按向量a=(h,k)平移后得到点P′(x+h,y+k);
(2)函数y=f(x)的图象C按向量a=(h,k)平移后得到图象C′,则C′的函数解析式为y=f(x-h)+k;
(3)图象C′按向量a=(h,k)平移后得到图象C,若C的解析式y=f(x),则C′的函数解析式为y=f(x+h)-k;
(4)曲线C:f(x,y)=0按向量a=(h,k)平移后得到图象C′,则C′的方程为f(x-h,y-k)=0;
(5)向量m=(x,y)按向量a=(h,k)平移后得到的向量仍然为m=(x,y)。
与“将的图象按向量平移,则平移后所得图象的解析式为A.B.C.D.”考查相似的试题有: