本试题 “已知函数f(x)=|x|,x∈p-x2+2x,x∈M其中P,M是非空数集,且P∩M=φ,设f(P)={y|y=f(x),x∈P},f(M)={y|y=f(x),x∈M}.(I)若P=(-∞,0),M=[0,4],...” 主要考查您对集合间交、并、补的运算(用Venn图表示)
分段函数与抽象函数
等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
1、交集概念:
(1)一般地,由所有属于集合A且集合B的元素所组成的集合,叫做A与B的交集,记作A∩B,读作A交B,表达式为A∩B={x|x∈A且x∈B}。
(2)韦恩图表示为
。
2、并集概念:
(1)一般地,由所有属于集合A或集合B的元素所组成的集合,叫做A与B的并集,记作A∪B,读作A并B,表达式为A∪B={x|x∈A或x∈B}。
(2)韦恩图表示为
。
3、全集、补集概念:
(1)全集:一般地,如果一个集合含有我们所要研究的各个集合的全部元素,就称这个集合为全集,通常记作U。
补集:对于一个集合A,由全集U中所有不属于A的元素组成的集合称为集合A相对于全集U的补集,记作CUA,读作U中A的补集,表达式为CUA={x|x∈U,且xA}。
(2)韦恩图表示为
。
1、交集的性质:
2、并集的性质:
3、补集的性质:
分段函数:
1、分段函数:定义域中各段的x与y的对应法则不同,函数式是分两段或几段给出的;
分段函数是一个函数,定义域、值域都是各段的并集。
抽象函数:
我们把没有给出具体解析式的函数称为抽象函数;
一般形式为y=f(x),或许还附有定义域、值域等,如:y=f(x),(x>0,y>0)。
知识点拨:
1、绝对值函数去掉绝对符号后就是分段函数。
2、分段函数中的问题一般是求解析式、反函数、值域或最值,讨论奇偶性单调性等。
3、分段函数的处理方法:分段函数分段研究。
与“已知函数f(x)=|x|,x∈p-x2+2x,x∈M其中P,M是非空数集,且P...”考查相似的试题有: