本试题 “已知数列{an}是各项均不为0的等差数列,公差为d,Sn为其前n项和,且满足an2=S2n-1,n∈N﹡.数列{bn}满足,Tn为数列{bn}的前n项和.(Ⅰ)求a1,d和Tn;(Ⅱ)若...” 主要考查您对数列求和的其他方法(倒序相加,错位相减,裂项相加等)
基本不等式及其应用
等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
数列求和的常用方法:
1.裂项相加法:数列中的项形如的形式,可以把表示为,累加时抵消中间的许多项,从而求得数列的和;
2、错位相减法:源于等比数列前n项和公式的推导,对于形如的数列,其中为等差数列,为等比数列,均可用此法;
3、倒序相加法:此方法源于等差数列前n项和公式的推导,目的在于利用与首末两项等距离的两项相加有公因式可提取,以便化简后求和。
4、分组转化法:把数列的每一项分成两项,或把数列的项“集”在一块重新组合,或把整个数列分成两个部分,使其转化为等差或等比数列,这一求和方法称为分组转化法。
5、公式法求和:所给数列的通项是关于n的多项式,此时求和可采用公式求和,常用的公式有:
数列求和的方法多种多样,要视具体情形选用合适方法。
数列求和特别提醒:
(1)对通项公式含有的一类数列,在求时,要注意讨论n的奇偶性;
(2)在用等比数列前n项和公式时,一定要分q=1和q≠1两种情况来讨论。
基本不等式:
(当且仅当a=b时取“=”号);
变式:①,(当且仅当a=b时取“=”号),即两个正数的算术平均不小于它们的几何平均。
②;③;④;
对基本不等式的理解:
(1)基本不等式的证明是利用重要不等式推导的,即,即有
(2)基本不等式又称为均值定理、均值不等式等,其中的算术平均数,的几何平均数,本定理也可叙述为:两个正数的算术平均数不小于它们的几何平均数.
(3)要特别注意不等式成立的条件和等号成立的条件.均值不等式中:①当a=b时取等号,即
对于两个正数x,y,若已知xy,x+y,中的某一个为定值,可求出其余各个的最值:
如:(1)当xy=P(定值),那么当x=y时,和x+y有最小值2,;
(2)x+y=S(定值),那么当x=y时,积xy有最大值,;
(3)已知x2+y2=p,则x+y有最大值为,。
应用基本的不等式解题时:
注意创设一个应用基本不等式的情境及使等号成立的条件,即“一正、二定、三相等”。
利用基本不等式比较实数大小:
(1)注意均值不等式的前提条件.
(2)通过加减项的方法配凑成使用均值定理的形式.
(3)注意“1”的代换.
(4)灵活变换基本不等式的形式,并注重其变形形式的运用.重要不等式的形式可以是,也可以是,还可以是等,不仅要掌握原来的形式,还要掌握它的几种变形形式以及公式的逆用等,以便应用.
(5)合理配组,反复应用均值不等式。
与“已知数列{an}是各项均不为0的等差数列,公差为d,Sn为其前n项...”考查相似的试题有: