返回

高中三年级数学

首页
  • 填空题
    已知点P是△ABC的中位线EF上任意一点,且EF∥BC,实数x,y满足.设△ABC,△PBC,△PCA,△PAB的面积分别为S,S1,S2,S3,记.则λ2λ3取最大值时,2x+y的值为(    ).
    本题信息:2011年黑龙江省期末题数学填空题难度一般 来源:段潇潇(高中数学)
  • 本题答案
    查看答案
本试题 “已知点P是△ABC的中位线EF上任意一点,且EF∥BC,实数x,y满足.设△ABC,△PBC,△PCA,△PAB的面积分别为S,S1,S2,S3,记,,.则λ2λ3取最大值时,2x+y的值为(...” 主要考查您对

基本不等式及其应用

向量的加、减法运算及几何意义

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 基本不等式及其应用
  • 向量的加、减法运算及几何意义

基本不等式:

(当且仅当a=b时取“=”号);
变式:①(当且仅当a=b时取“=”号),即两个正数的算术平均不小于它们的几何平均。
;③;④


对基本不等式的理解:

(1)基本不等式的证明是利用重要不等式推导的,即,即有
(2)基本不等式又称为均值定理、均值不等式等,其中的算术平均数,的几何平均数,本定理也可叙述为:两个正数的算术平均数不小于它们的几何平均数.
(3)要特别注意不等式成立的条件和等号成立的条件.均值不等式中:①当a=b时取等号,即


对于两个正数x,y,若已知xy,x+y,中的某一个为定值,可求出其余各个的最值:
如:(1)当xy=P(定值),那么当x=y时,和x+y有最小值2
(2)x+y=S(定值),那么当x=y时,积xy有最大值
(3)已知x2+y2=p,则x+y有最大值为

应用基本的不等式解题时:

注意创设一个应用基本不等式的情境及使等号成立的条件,即“一正、二定、三相等”。

利用基本不等式比较实数大小:

(1)注意均值不等式的前提条件.
(2)通过加减项的方法配凑成使用均值定理的形式.
(3)注意“1”的代换.
(4)灵活变换基本不等式的形式,并注重其变形形式的运用.重要不等式的形式可以是,也可以是,还可以是等,不仅要掌握原来的形式,还要掌握它的几种变形形式以及公式的逆用等,以便应用.
(5)合理配组,反复应用均值不等式。 


基本不等式的几种变形公式:
 
 

向量加法的定义:

已知非零向量ab,在平面内任取一点A,作,再做向量,则向量叫做的和,即
作向量的加法有“三角形法则”和“平行四边形法则”,其中“平行四边形法则”只适用于不共线的向量。

向量加法的三角形法则:

已知非零向量a,b,在平面内任意取一点A,作a,

这种求向量和的方法称为向量加法的三角形法则,如图
 
 
向量加法的平行四边形法则:
 
以同一点O起点的两个已知向量a,b为邻边作平行四边形OACB,则以O为起点的对角线OC就是ab的和,这种作两个向量和的方法叫做向量加法的平行四边形法则,如图.
  

向量减法的定义:

向量与向量的相反向量的和,叫做向量与向量的差,记作:
作向量减法有“三角形法则”:设,那么,由减向量和终点指向被减向量和终点。
注意:此处减向量与被减向量的起点相同。

向量减法的作图法:

 
 
  
 因此,a-b可以表示为从向量b的终点指向向量a的终点的向量,这就是向量减法的几何意义.

坐标运算:

已知,则


向量加减法的运算律:

(1)交换律:
(2)结合律:


求向量的和的三角形法则的理解:

使用三角形法则特别要注意“首尾相接”,具体做法是把用小写字母表示的向量,用两个大写字母表示(其中后面向量的起点与其前一个向量的终点重合,即用同一个字母表示),则由第一个向量的起点指向最后一个向量终点的有向线段就表示这些向量的和。对于n个向量,仍有 这可以称为向量加法的多边形法则。

作两个向量的和向量,可分四步:

①取点,注意取点的任意性;
②作相等向量,分别作与两个已知向量相等的向量,使它们的起点重合;
③作平行四边形,以两个向量为邻边作平行四边形;
④作和向量,与两个向量有共同起点的对角线作为和向量,共同的起点作为和向量的起点,对角线的另一个端点作为和向量的终点.当两个向量不共线时,三角形法则和平行四边形法则是一致的;当两个向量共线时,三角形法则同样适用,而平行四边形法则就不适用了.

向量的加法需要说明的几点:

①当两个非零向量ab不共线时,a+b的方向与a,b的方向都不相同,且
②当两个非零向量ab共线时,
a.向量ab同向(如下图),即向量a+ba(b)方向相同,且
 
b.向量ab反向(如上图)且|a|<|b|时,即a+bb方向相同(与a方向相反),且

综上可知

向量减法的理解:

①定义向量减法是借助了相反向量和向量加法,其实,向量减法的实质是向量加法的逆运算.两个向量的差仍是向量;
②作差向量时,作法一较为复杂,作法二较为简捷,应根据问题的需要灵活运用;
③以为邻边作平行四边形ABCD,则两条对角线表示的向量为这一结论在以后的应用是非常广泛的,应该加强理解并记住;
④对于任意一点O,简记为“中减起”,在解题中经常用到,必须记住.