返回

初中数学

首页
  • 填空题
    下列说法正确的是______.
    ①已知点(x1,y1),(x2,y2)在反比例函数y=-
    1
    x
    的图象上,若x1<x2,则y1<y2
    ②一组数据a1,a2,…,an的方差是2,则数据2a1,2a2,…,2an的方差是8;
    ③方程
    1
    x-5
    =
    10
    x2-25
    的解是x=5;
    ④关于x的方程(a-1)x2+x+a2-1=0的一个根为0,则a=±1.
    本题信息:数学填空题难度一般 来源:未知
  • 本题答案
    查看答案
本试题 “下列说法正确的是______.①已知点(x1,y1),(x2,y2)在反比例函数y=-1x的图象上,若x1<x2,则y1<y2;②一组数据a1,a2,…,an的方差是2,则数据2a1,2a2...” 主要考查您对

解分式方程

反比例函数的图像

方差

一元二次方程的解法

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 解分式方程
  • 反比例函数的图像
  • 方差
  • 一元二次方程的解法
解法:
解分式方程的基本思想是把分式方程转化为整式方程,其一般步骤是:
(1)去分母:分式方程两边同乘以方程中各分母的最简公分母,把分式方程转化为整式方程。
(最简公分母:①系数取最小公倍数②出现的字母取最高次幂③出现的因式取最高次幂)
(2)解方程:解整式方程,得到方程的根;
(3)验根:将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;
否则,这个解不是原分式方程的解,是原分式方程的增根。
如果分式本身约分了,也要带进去检验。
在列分式方程解应用题时,不仅要检验所得解的是否满足方程式,还要检验是否符合题意。
一般的,解分式方程时,去分母后所得整式方程的解有可能使原方程中分母为零,因此要将整式方程的解代入最简公分母,如果最简公分母的值不为零,则是方程的解.
注意:
(1)注意去分母时,不要漏乘整式项。
(2)増根是分式方程去分母后化成的整式方程的根,但不是原分式方程的根。
(3)増根使最简公分母等于0。

分式方程的特殊解法:
换元法:
换元法是中学数学中的一个重要的数学思想,其应用非常广泛,当分式方程具有某种特殊形式,一般的去分母不易解决时,可考虑用换元法。

解分式方程的基本思路是将分式方程化为整式方程,具体做法是“去分母”,即方程两边同乘最简公分母,这也是解分式方程的一般思路和做法。
解分式方程注意:
①解分式方程的基本思想是把分式方程转化为整式方程,通过解整式方程进一步求得分式方程的解;
②用分式方程中的最简公分母同乘方程的两边,从而约去分母,但要注意用最简公分母乘方程两边各项时,切勿漏项;
③解分式方程可能产生使分式方程无意义的情况,那么检验就是解分式方程的必要步骤。


反比例函数的图象:
反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限,它们关于原点对称。由于反比例函数中自变量x≠0,函数y≠0,所以,它的图像与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。
反比例函数的图像属于以原点为对称中心的中心对称的双曲线,反比例函数图像中每一象限的每一支曲线会无限接近X轴Y轴但不会与坐标轴相交(y≠0)。
反比例函数图象的画法:
1)列表:

(2)描点:在平面直角坐标系中标出点。
(3)连线:用平滑的曲线连接点。
当双曲线在一三象限,K>0,在每个象限内,Y随X的增大而减小。
当双曲线在二四象限,K<0,在每个象限内,Y随X的增大而增大。
常见画法当两个数相等时那么曲线呈弯月型。
k的意义及应用:
过反比例函数(k≠0),图像上一点P(x,y),作两坐标轴的垂线,两垂足、原点、P点组成一个矩形,矩形的面积。过反比例函数过一点,作垂线,三角形的面积为
研究函数问题要透视函数的本质特征。反比例函数中,比例系数k有一个很重要的几何意义,那就是:过反比例函数图象上任一点P作x轴、y轴的垂线PM、PN,垂足为M、N则矩形PMON的面积
所以,对双曲线上任意一点作x轴、y轴的垂线,它们与x轴、y轴所围成的矩形面积为常数。从而有k的绝对值。在解有关反比例函数的问题时,若能灵活运用反比例函数中k的几何意义,会给解题带来很多方便。

推论内容:一次函数y=x+b或y=-x+b若与反比例函数存在两个交点,若设2点的横坐标分别为x1,x2,那么这两个交点与原点连线和两点之间的连线所构成的三角形面积为
不同象限分比例函数图像:


常见画法:


方差:
是各个数据与平均数之差的平方和的平均数。
在概率论和数理统计中,方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。
在许多实际问题中,研究随机变量和均值之间的偏离程度有着很重要的意义。
设有n个数据各数据x1,x2,…,xn各数据与它们的平均数的差的平方分别是,…,,我们用它的平均数,即用来衡量这组数据的波动大小,并把它叫做这组数据的方差,记作
方差特点:
(1)设c是常数,则D(c)=0。
(2)设X是随机变量,c是常数,则有D(cX)=(c2)D(X)。
(3)设 X 与 Y 是两个随机变量,则
D(X+Y)= D(X)+D(Y)+2E{[X-E(X)][Y-E(Y)]}
特别的,当X,Y是两个相互独立的随机变量,上式中右边第三项为0(常见协方差),
则D(X+Y)=D(X)+D(Y)。此性质可以推广到有限多个相互独立的随机变量之和的情况。
(4)D(X)=0的充分必要条件是X以概率为1取常数值c,即P{X=c}=1,其中E(X)=c。
(5)D(aX+bY)=a^2DX+b^2DY+2abE{[X-E(X)][Y-E(Y)]}。

意义
在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定。

标准差:
方差的算术平均根,即,并把它叫做这组数据的标准差,它也是一个用来衡量一组数据的波动大小的重要的量。

式:
方差是实际值与期望值之差平方的期望值,而标准差是方差算术平方根。 在实际计算中,我们用以下公式计算方差。
方差是各个数据与平均数之差的平方的平均数,即s^2=(1/n)[(x1-x_)^2+(x2-x_)^2+...+(xn-x_)^2],其中,x_表示样本的平均数,n表示样本的数量,^,xn表示个体,而s^2就表示方差。
而当用(1/n)[(x1-x_)^2+(x2-x_)^2+...+(xn-x_)^2]作为样本X的方差的估计时,发现其数学期望并不是X的方差,而是X方差的(n-1)/n倍,[1/(n-1)][(x1-x_)^2+(x2-x_)^2+...+(xn-x_)^2]的数学期望才是X的方差,用它作为X的方差的估计具有“无偏性”,所以我们总是用[1/(n-1)]∑(xi-X~)^2来估计X的方差,并且把它叫做“样本方差”。
方差,通俗点讲,就是和中心偏离的程度!用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)并把它叫做这组数据的方差。记作S&sup2.在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定。

方差分析主要用途:
①均数差别的显著性检验;
②分离各有关因素并估计其对总变异的作用;
③分析因素间的交互作用;
④方差齐性检验。


一元二次方程的解:
能够使方程左右两边相等的未知数的值叫做方程的解。
解一元二次方程方程:
求一元二次方程解的过程叫做解一元二次方程方程。

韦达定理:
一元二次方程根与系数的关系(以下两个公式很重要,经常在考试中运用到)
一般式:ax2+bx+c=0的两个根x1和x2关系:
x1+x2= -b/a
x1·x2=c/a


一元二次方程的解法:
1、直接开平方法
利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。
直接开平方法适用于解形如的一元二次方程,根据平方根的定义可知,x+a 是b的平方根,当时,;当b<0时,方程没有实数根。
用直接开平方法求一元二次方程的根,一定要正确运用平方根的性质,即正数的平方根有两个,它们互为相反数,零的平方根是零,负数没有平方根。

2、配方法
配方法是一种重要的数学方法,它不仅在解一元二次方程上有所应用,而且在数学的其他领域也有着广泛的应用。
配方法的理论根据是完全平方公式,把公式中的a看做未知数x,并用x代替,则有

3、公式法
公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。
一元二次方程 的求根公式:
求根公式是专门用来解一元二次方程的,故首先要求a≠0;有因为开平方运算时,被开方数必须是非负数,所以第二个条件是b2-4ac≥0。即求根公式使用的前提条件是a≠0且b2-4ac≥0。

4、因式分解法
因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。