返回

高中数学

首页
  • 填空题
    下列命题中
    ①若|
    a
    b
    |=|
    a
    |•|
    b
    |,则
    a
    b

    a
    =(-1,1)在
    b
    =(3,4)方向上的投影为
    1
    5

    ③若△ABC中,a=5,b=8,c=7则
    BC
    CA
    =20;
    ④若非零向量
    a
    b
    满足|
    a
    +
    b
    |=
    b
    ,则|2
    b
    |>|
    a
    +2
    b
    |.
    其中真命题是______.
    本题信息:数学填空题难度较难 来源:未知
  • 本题答案
    查看答案
本试题 “下列命题中①若|a•b|=|a|•|b|,则a∥b;②a=(-1,1)在b=(3,4)方向上的投影为15;③若△ABC中,a=5,b=8,c=7则BC•CA=20;④若非零向量a、b满足|a+b|=b,则|2b|...” 主要考查您对

向量共线的充要条件及坐标表示

向量数量积的含义及几何意义

向量数量积的运算

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 向量共线的充要条件及坐标表示
  • 向量数量积的含义及几何意义
  • 向量数量积的运算

向量共线的充要条件:

向量共线,当且仅当有唯一一个实数λ,使得

向量共线的几何表示:

,其中,当且仅当时,向量共线。


向量共线(平行)基本定理的理解:

(1)对于向量aa≠0),b,如果有一个实数λ,使得ba,那么由向量数乘的定义知,ab共线.
(2)反过来,已知向量ab共线,a≠0,且向量b的长度是向量a的长度的μ倍,即|b|=μ|a|,那么当ab同方向时,有b=μa;当ab反方向时,有b=-μa.
(3)向量平行与直线平行是有区别的,直线平行不包括重合.
(4)判断a(a≠0)b是否共线时,关键是寻找a前面的系数,如果系数有且只有一个,说明共线;如果找不到满足条件的系数,则这两个向量不共线.
(5)如果a=b=0,则数λ仍然存在,且此时λ并不唯一,是任意数值.


两个向量的夹角的定义:

对于非零向量,作称为向量的夹角,当=0时,同向,当=π时,反向,
时,垂直。

两个向量数量积的含义:

如果两个非零向量,它们的夹角为,我们把数量叫做的数量积(或内积或点积),记作:,即
上的投影。
规定:零向量与任一向量的数量积是0,注意数量积是一个实数,不再是一个向量。

两个向量数量积的几何意义

数量积等于的模上的投影的乘积。


向量数量积的性质:

设两个非零向量
(1)
(2)
(3)
(4)
(5)当同向时,;当反向时,;当为锐角时,为正且不同向,;当为钝角时,为负且不反向,


两个向量数量积的含义:

如果两个非零向量,它们的夹角为,我们把数量叫做的数量积(或内积或点积),记作:,即
上的投影。
规定:零向量与任一向量的数量积是0,注意数量积是一个实数,不再是一个向量。


数量积的的运算律:

已知向量和实数λ,下面(1)(2)(3)分别叫做交换律,数乘结合律,分配律。
(1)
(2)
(3)


向量数量积的性质:

设两个非零向量
(1)
(2)
(3)
(4)
(5)当同向时,;当反向时,;当为锐角时,为正且不同向,;当为钝角时,为负且不反向,