返回

高中二年级数学

首页
  • 计算题
    化简求值:
    (1) 已知,求
    (2).
    本题信息:2012年期中题数学计算题难度较难 来源:沈诺(高中数学)
  • 本题答案
    查看答案
本试题 “化简求值:(1) 已知,求;(2).” 主要考查您对

指数与指数幂的运算(整数、有理、无理)

对数与对数运算

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 指数与指数幂的运算(整数、有理、无理)
  • 对数与对数运算

n次方根的定义

一般地,如果xn=a,那么x叫做a的n次方根,其中n>1,且n∈N*。

分数指数幂的意义

(1)
(2)
(3)0的正分数指数幂等于0,0的负分数指数幂没有意义。


n次方根的性质:

(1)0的n次方根是0,即=0(n>1,n∈N*);
(2)=a(n∈N*);
(3)当n为奇数时,=a;当n为偶数时,=|a|。

幂的运算性质

(1)
(2)
(3)
注意:一般地,无理数指数幂(a>0,α是无理数)是一个确定的实数,上述有理指数幂的运算性质,对于无理指数幂都适用。


对数的定义:
如果ax=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记做,其中a叫做对数的底数,N叫做真数。
通常以10为底的对数叫做常用对数,记做
以无理数e=2.71828…为底的对数叫做自然对数,记做
由定义知负数和0没有对数。

常用对数
以10为底的对数叫做常用对数,

自然对数:
以e为底的对数叫做自然对数,e是无理数,e≈-2. 718 28,


对数的运算性质:

如果a>0,且a≠1,M>0,N>0,那么
(1)
(2)
(3)
(4)

对数的恒等式

(1);(2)
(3);(4)
(5)

对数的换底公式及其推论:

 


对数式的化简与求值

(1)化同底是对数式变形的首选方向,其中经常用到换底公式及其推论.
(2)结合对数定义,适时进行对数式与指数式的互化.
(3)利用对数运算法则,在积、商、幂的对数与对数的和、差、倍之间进行转化,