返回

高中数学

首页
  • 解答题
    设命题p:方程
    x2
    k-7
    +
    y2
    k
    =1表示焦点在y轴上的双曲线,
    命题q:函数f(x)=x3-kx2+1在(0,2)内单调递减,如果p∧q为真命题,求k的取值范围.
    本题信息:数学解答题难度较难 来源:未知
  • 本题答案
    查看答案
本试题 “设命题p:方程x2k-7+y2k=1表示焦点在y轴上的双曲线,命题q:函数f(x)=x3-kx2+1在(0,2)内单调递减,如果p∧q为真命题,求k的取值范围.” 主要考查您对

函数的单调性与导数的关系

双曲线的性质(顶点、范围、对称性、离心率)

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 函数的单调性与导数的关系
  • 双曲线的性质(顶点、范围、对称性、离心率)

导数和函数的单调性的关系:

(1)若f′(x)>0在(a,b)上恒成立,则f(x)在(a,b)上是增函数,f′(x)>0的解集与定义域的交集的对应区间为增区间;
(2)若f′(x)<0在(a,b)上恒成立,则f(x)在(a,b)上是减函数,f′(x)<0的解集与定义域的交集的对应区间为减区间。


利用导数求解多项式函数单调性的一般步骤:

①确定f(x)的定义域;
②计算导数f′(x);
③求出f′(x)=0的根;
④用f′(x)=0的根将f(x)的定义域分成若干个区间,列表考察这若干个区间内f′(x)的符号,进而确定f(x)的单调区间:f′(x)>0,则f(x)在对应区间上是增函数,对应区间为增区间;f′(x)<0,则f(x)在对应区间上是减函数,对应区间为减区间。

函数的导数和函数的单调性关系特别提醒:

若在某区间上有有限个点使f′(x)=0,在其余的点恒有f′(x)>0,则f(x)仍为增函数(减函数的情形完全类似).即在区间内f′(x)>0是f(x)在此区间上为增函数的充分条件,而不是必要条件。 


双曲线的离心率的定义:

(1)定义:双曲线的焦距与实轴长的比叫做双曲线的离心率.
(2)e的范围:e>l.
(3)e的含义:e是表示双曲线开口大小的一个量,e越大开口越大.

渐近线与实轴的夹角也增大。


双曲线的性质:

1、焦点在x轴上:顶点:(a,0),(-a,0);焦点:(c,0),(-c,0);
渐近线方程:
2、焦点在y轴上:顶点:(0,-a),(0,a);焦点:(0,c),(0,-c);
渐近线方程:
3、轴:x、y为对称轴,实轴长为2a,虚轴长为2b,焦距2c。
4、离心率
5、中,取值范围:x≤-a或x≥a,y∈R,对称轴是坐标轴,对称中心是原点。


双曲线的焦半径:

双曲线上的点之间的线段长度称作焦半径,分别记作


 
 
 
关于双曲线的几个重要结论:
 
(1)弦长公式(与椭圆弦长公式相同).
(2)焦点三角形:已知的两个焦点,P为双曲线上一点(异于顶点),
的面积为
在解决与焦点三角形有关的问题时,应注意双曲线的两个定义、焦半径公式以及三角形的边角关系、正弦定理等知识的综合运用,还应注意灵活地运用平面几何、三角函数等知识来分析解决问题.
(3)基础三角形:如图所示,△AOB中,
 
(4)双曲线的一个焦点到一条渐近线的距离等于虚半轴长.
(5)自双曲线的焦点作渐近线的垂线,垂足必在相应的准线上,即过焦点所作的渐近线的垂线,渐近线及相应准线三线共点.
(6)以双曲线的焦半径为直径的圆与以实轴为直径的圆外切或内切.
(7)双曲线上一点P(x0,y0)处的切线方程是
(8)双曲线划分平面区域:对于双曲线,我们有:P(x0,y0)在双曲线内部(与焦点共区域) P(x0,y0)在双曲线外部(与焦点不其区域)