本试题 “设二次函数f(x)=ax2+bx+c(a,b,c∈R)满足下列条件:①当x∈R时,f(x)的最小值为0,且f(x-1)=f(-x-1)恒成立;②当x∈(0,5)时,x≤f(x)≤2|x-1|+1恒成...” 主要考查您对函数的奇偶性、周期性
二次函数的性质及应用
函数解析式的求解及其常用方法
等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
函数的奇偶性定义:
偶函数:一般地,如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),则称函数f(x)为偶函数。
奇函数:一般地,如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)是奇函数。
函数的周期性:
(1)定义:若T为非零常数,对于定义域内的任一x,使f(x+T)=f(x)恒成立,则f(x)叫做周期函数,T叫做这个函数的一个周期。
周期函数定义域必是无界的。
(2)若T是周期,则k·T(k≠0,k∈Z)也是周期,所有周期中最小的正数叫最小正周期。一般所说的周期是指函数的最小正周期。
周期函数并非都有最小正周期,如常函数f(x)=C。
奇函数与偶函数性质:
(1)奇函数与偶函数的图像的对称性:奇函数的图像关于原点对称,偶函数的图像关于y轴对称。
(3)在公共定义域内,①两个奇函数的和是奇函数,两个奇函数的积是偶函数; ②两个偶函数的和、积是偶函数; ③一个奇函数,一个偶函数的积是奇函数。
注:定义域在数轴上关于原点对称是函数f(x)为奇函数或偶函数的必要但不充分条件.
1、函数是奇函数或偶函数的前提定义域必须关于原点对称;定义域在数轴上关于原点对称是函数f(x)为奇函数或偶函数的必要但不充分条件.
2、函数的周期性 令a , b 均不为零,若:
(1)函数y = f(x) 存在 f(x)=f(x + a) ==> 函数最小正周期 T=|a|
(2)函数y = f(x) 存在f(a + x) = f(b + x) ==> 函数最小正周期 T=|b-a|
(3)函数y = f(x) 存在 f(x) = -f(x + a) ==> 函数最小正周期 T=|2a|
(4)函数y = f(x) 存在 f(x + a) = ==> 函数最小正周期 T=|2a|
(5)函数y = f(x) 存在 f(x + a) = ==> 函数最小正周期 T=|4a|
二次函数的定义:
一般地,如果(a,b,c是常数,a≠0),那么y叫做x的二次函数。
二次函数的图像:
是一条关于对称的曲线,这条曲线叫抛物线。
抛物线的主要特征:①有开口方向,a表示开口方向;a>0时,抛物线开口向上;a<0时,抛物线开口向下;
②有对称轴;
③有顶点;
④c表示抛物线与y轴的交点坐标:(0,c)。
性质:二次函数y=ax2+bx+c,
①当a>0时,函数f(x)的图象开口向上,在(-∞,-)上是减函数,在[-,+∞)上是增函数;
②当a<0时,函数f(x)的图象开口向下,在(-∞,-)上是增函数,在[-,+∞)是减函数。
二次函数(a,b,c是常数,a≠0)的图像:
图像 | 函数的性质 | ||
a>0 | 定义域 | x∈R(个别题目有限制的,由解析式确定) | |
|
值域 | a>0 | a<0 |
|
| ||
奇偶性 | b=0时为偶函数,b≠0时为非奇非偶函数 | ||
a<0 | 单调性 | a>0 | a<0 |
|
|
| |
|
| ||
图像特点 |
|
二次函数的解析式:
(1)一般式:(a,b,c是常数,a≠0);
(2)顶点式:若二次函数的顶点坐标为(h,k),则其解析式为 ;
(3)双根式:若相应一元二次方程的两个根为 ,则其解析式为 。
二次函数在闭区间上的最值的求法:
(1)二次函数 在区间[p,g]上的最值问题
一般情况下,需要分三种情况讨论解决.
当a>0时,f(x)在区间[p,g]上的最大值为M,最小值为m,令 .
①
②
③
④
特别提醒:在区间内同时讨论最大值和最小值需要分四种情况讨论.
(2)二次函数在区间[m.n]上的最值问题一般地,有以下结论:
特别提醒:max{1,2}=2,即取集合{1,2}中最大的元素。
二次函数的应用:
(1)应用二次函数才解决实际问题的一般思路:
理解题意;建立数学模型;解决题目提出的问题。
(2)应用二次函数求实际问题中的最值:
即解二次函数最值应用题,设法把关于最值的实际问题转化为二次函数的最值问题,然后按求二次函数最值的方法求解。求最值时,要注意求得答案要符合实际问题。
函数解析式的常用求解方法:
(1)待定系数法:(已知函数类型如:一次、二次函数、反比例函数等):若已知f(x)的结构时,可设出含参数的表达式,再根据已知条件,列方程或方程组,从而求出待定的参数,求得f(x)的表达式。待定系数法是一种重要的数学方法,它只适用于已知所求函数的类型求其解析式。
(2)换元法(注意新元的取值范围):已知f(g(x))的表达式,欲求f(x),我们常设t=g(x),从而求得,然后代入f(g(x))的表达式,从而得到f(t)的表达式,即为f(x)的表达式。
(3)配凑法(整体代换法):若已知f(g(x))的表达式,欲求f(x)的表达式,用换元法有困难时,(如g(x)不存在反函数)可把g(x)看成一个整体,把右边变为由g(x)组成的式子,再换元求出f(x)的式子。
(4)消元法(如自变量互为倒数、已知f(x)为奇函数且g(x)为偶函数等):若已知以函数为元的方程形式,若能设法构造另一个方程,组成方程组,再解这个方程组,求出函数元,称这个方法为消元法。
(5)赋值法(特殊值代入法):在求某些函数的表达式或求某些函数值时,有时把已知条件中的某些变量赋值,使问题简单明了,从而易于求出函数的表达式。
与“设二次函数f(x)=ax2+bx+c(a,b,c∈R)满足下列条件:①当x∈...”考查相似的试题有: