返回

高中数学

首页
  • 填空题
    (坐标系与参数方程选做题) 已知直线l的参数方程为
    x=
    2
    2
    t
    y=1+
    2
    2
    t
    (t为参数),圆C的参数方程为
    x=cosθ+2
    y=sinθ
    (θ为参数),则圆心C到直线l的距离为______.
    本题信息:数学填空题难度较难 来源:未知
  • 本题答案
    查看答案
本试题 “(坐标系与参数方程选做题) 已知直线l的参数方程为x=22ty=1+22t(t为参数),圆C的参数方程为x=cosθ+2y=sinθ(θ为参数),则圆心C到直线l的距离为______.” 主要考查您对

点到直线的距离

参数方程的概念

圆的参数方程

直线的参数方程

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 点到直线的距离
  • 参数方程的概念
  • 圆的参数方程
  • 直线的参数方程

点到直线的距离公式:

1、若点P(x0,y0)在直线Ax+By+C=0(A,B不同时为0)上,则Ax0+By0+C=0。
2、若点P(x0,y0)不在直线Ax+By+C=0(A,B不同时为0)上,则Ax0+By0+C≠0,此时点P(x0,y0)直线Ax+By+C=0(A,B不同时为0)的距离d=


点到直线的距离公式的理解:

①点到直线的距离是直线上的点与直线外一点的连线的最短距离(这是从运动观点来看的).
②若给出的直线方程不是一般式,则应先把方程化为一般式,再利用公式求距离.
③点到直线的距离公式适用于任何情况,其中点P在直线l上时,它到直线的距离为0.
④点到几种特殊直线的距离:
 

 

 
 

参数方程的概念:
一般地,在给定的平面直角坐标系中,如果曲线上任意一点的坐标x,y都是某个变数t的函数 且对于t的每一个允许值,由这个方程组所确定的点M(x,y)都在这条曲线上,那么这个方程组称为这条曲线的参数方程,联系x、y之间关系的变数t称为参变数,简称参数。相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程.


参数方程和普通方程的互化:

在参数方程与普通方程的互化中,必须使x,y的取值范围保持一致.否则,互化就是不等价的。
(1)参数方程化为普通方程的过程就是消参过程,常见方法有三种:
①代入法:利用解方程的技巧求出参数t,然后代入消去参数;
②三角法:利用三角恒等式消去参数;
③整体消元法:根据参数方程本身的结构特征,从整体上消去.
(2)普通方程化为参数方程需要引入参数.
如:①直线的普通方程是2x-y+2=0,可以化为参数方程 
②在普通方程xy=1中,令可以化为参数方程


关于参数的几点说明:

(1)参数是联系变数x,y的桥梁,可以是一个有物理意义或几何意义的变数,也可以是没有明显实际意义的变数.
(2)同一曲线选取参数不同,曲线参数方程形式也不同.
(3)在实际问题中要确定参数的取值范围.

参数方程的几种常用方法:

方法1参数方程与普通方程的互化:将曲线的参数方程化为普通方程的方法应视题目的特点而定,要选择恰当的方法消参,并要注意由于消参后引起的范围限制消失而造成的增解问题.常用的消参技巧有加减消参,代人消参,平方消参等.
方法2求曲线的参数方程:求曲线的参数方程或应用曲线的参数方程,要熟记曲线参数方程的形式及参数的意义.
方法3参数方程问题的解决方法:解决参数方程的一个基本思路是将其转化为普通方程,然后利用在直角坐标系下解决问题的方式进行解题.
方法4利用圆的渐开线的参数方程求点:利用参数方程求解点时只需将参数代入方程就可求得。
方法5求圆的摆线的参数方程:根据圆的摆线的参数方程的表达式,可知只需求出其中的r,也就是说,摆线的参数方程由圆的半径唯一确定,因此只需把点代人参数方程求出r值再代人参数方程的表达式.


圆的参数方程:

(θ∈[0,2π)),(a,b)为圆心坐标,r为圆的半径,θ为参数(x,y)为经过点的坐标。

 


圆心为原点,半径为r的圆的参数方程:

如图,如果点P的坐标为(x,y),圆半径为r, 根据三角函数定义,点P的横坐标x、纵坐标y都是θ的函数,即
 


直线的参数方程:

过定点倾斜角为α的直线的参数方程为(t为参数)。


直线的参数方程及其推导过程:

e是与直线l平行且方向向上(l的倾斜角不为0)或向右(l的倾斜角为0)的单位方向向量(单位长度与坐标轴的单位长度相同).直线l的倾斜角为α,定点M0、动点M的坐标分别为
 

直线的参数方程中参数t的几何意义是:表示参数t对应的点M到定点Mo的距离,当同向时,t取正数;当异向时,t取负数;当点M与Mo重合时,t=0.