返回

高中二年级数学

首页
  • 解答题
    如图:三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,AC=BC=
    1
    2
    AA1=2,∠ACB=90°,D为AB的中点,E点在BB1上且DE=
    6

    (1)求证:AB1平面DEC.
    (2)求证:A1E⊥平面DEC.

    本题信息:数学解答题难度较难 来源:未知
  • 本题答案
    查看答案
本试题 “如图:三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,AC=BC=12AA1=2,∠ACB=90°,D为AB的中点,E点在BB1上且DE=6.(1)求证:AB1∥平面DEC.(2)求证:A1E⊥平面DEC.” 主要考查您对

直线与平面垂直的判定与性质

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 直线与平面垂直的判定与性质

线面垂直的定义:

如果一条直线l和一个平面α内的任何一条直线垂直,就说这条直线l和这个平面α互相垂直,记作直线l叫做平面α的垂线,平面α叫做直线l的垂面。直线与平面垂直时,它们唯一的公共点P叫做垂足。

线面垂直的画法:

画线面垂直时,通常把直线画成与表示平面的平行四边形的一边垂直,如图所示:


 


线面垂直的判定定理:

如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直这个平面。(线线垂直线面垂直)

符号表示:

  如图所示,

 线面垂直的性质定理:

如果两条直线同垂直于一个平面,那么这两条直线平行。
(线面垂直线线平行)


线面垂直的判定定理的理解:

(1)判定定理的条件中,“平面内的两条相交直线”是关键性语句,一定要记准.
(2)如果一条直线垂直于平面内的两条直线,那么这条直线垂直于这个平面,这个结论是错误的.
(3)如果一条直线垂直于平面内的无数条直线,那么这条直线垂直于这个平面,这个结论也错误,因为这无数条直线可能平行.

证明线面垂直的方法:

(1)线面垂直的定义拓展了线线垂直的范围,线垂直于面,线就垂直于面内所有直线,这也是线面垂直的必备条件,利用这个条件可将线线垂直与线面垂直互相转化,这样就完成了空间问题与平面问题的转化.
(2)证线面垂直的方法①利用定义:若一直线垂直于平面内任一直线,则这条直线垂直于该平面.②利用线面垂直的判定定理:证一直线与一平面内的两条相交直线都垂直,③利用线面垂直的性质:两平行线中的一条垂直于平面,则另一条也垂直于这个平面,④用面面垂直的性质定理:两平面垂直,在一个平面内垂直于交线的直线必垂直于另一个平面.⑤用面面平行的性质定理:一直线垂直于两平行平面中的一个,那么它必定垂直于另一个平面.⑥用面面垂直的性质:两相交平面同时垂直于第三个平面,那么两平面的交线垂直于第三个平面.⑦利用向量证明.


发现相似题
与“如图:三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,AC=BC=12AA1=2...”考查相似的试题有: