返回

高中三年级数学

首页
  • 解答题

    已知抛物线C1:y2=4x的焦点与椭圆C2的右焦点F2重合,F1是椭圆的左焦点;
    (Ⅰ)在△ABC中,若A(-4,0),B(0,-3),点C在抛物线y2=4x上运动,求△ABC重心G的轨迹方程;
    (Ⅱ)若P是抛物线C1与椭圆C2的一个公共点,且∠PF1F2=,∠PF2F1=,求cos·cos的值及△PF1F2的面积。


    本题信息:2010年0103模拟题数学解答题难度极难 来源:张玲玲
  • 本题答案
    查看答案
本试题 “已知抛物线C1:y2=4x的焦点与椭圆C2:的右焦点F2重合,F1是椭圆的左焦点;(Ⅰ)在△ABC中,若A(-4,0),B(0,-3),点C在抛物线y2=4x上运动,求△ABC重心G的轨迹...” 主要考查您对

线段的定比分点

椭圆的性质(顶点、范围、对称性、离心率)

抛物线的性质(顶点、范围、对称性、离心率)

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 线段的定比分点
  • 椭圆的性质(顶点、范围、对称性、离心率)
  • 抛物线的性质(顶点、范围、对称性、离心率)

线段的定比分点定义:

设点P是直线P1P2上异于P1、P2的任意一点,若存在一个实数λ,使P1P=λPP2,λ叫做点P分有向线段所成的比,P点叫做有向线段 的以定比为λ的定比分点。
当P点在线段 P1P2上时,λ>0;当P点在线段 P1P2的延长线上时,λ<-1;当P点在线段P2P1的延长线上时 -1<λ<0。
若点P分有向线段所成的比为λ,则点P分有向线段所成的比为

有向线段的定比分点的坐标公式:

(1)设
在使用定比分点的坐标公式时,应明确(x,y),(x1,y1),(x2,y2)的意义,即分别为分点,起点,终点的坐标。一般在计算中应根据题设,自行确定起点,分点和终点并根据这些点确定对应的定比λ。
(2)当λ=1时,就得到P1P2的中点公式:
(3)三角形ABC的重心公式:设,则重心


 椭圆的离心率:

椭圆的焦距与长轴长之比叫做椭圆的离心率。


椭圆的性质:

1、顶点:A(a,0),B(-a,0),C(0,b)和D(0,-b)。
2、轴:对称轴:x轴,y轴;长轴长|AB|=2a,短轴长|CD|=2b,a为长半轴长,b为短半轴长。
3、焦点:F1(-c,0),F2(c,0)。
4、焦距:
5、离心率: 
离心率对椭圆形状的影响:e越接近1,c就越接近a,从而b就越小,椭圆就越扁;e越接近0,c就越接近0,从而b就越大,椭圆就越圆;
6、椭圆的范围和对称性:(a>b>0)中-a≤x≤a,-b≤y≤b,对称中心是原点,对称轴是坐标轴。


利用椭圆的几何性质解题:

利用椭圆的几何性质可以求离心率及椭圆的标准方程.要熟练掌握将椭圆中的某些线段长用a,b,c表示出来,例如焦点与各顶点所连线段的长,过焦点与长轴垂直的弦长等,这将有利于提高解题能力。

椭圆中求最值的方法:

求最值有两种方法:
(1)利用函数最值的探求方法利用函数最值的探求方法,将其转化为函数的最值问题来处理.此时应充分注意椭圆中x,y的范围,常常是化为闭区间上的二次函数的最值来求解。
(2)数形结合的方法求最值解决解析几何问题要注意数学式子的几何意义,寻找图形中的几何元素、几何量之间的关系.

椭圆中离心率的求法:

在求离心率时关键是从题目条件中找到关于a,b,c的两个方程或从题目中得到的图形中找到a,b,c的关系式,从而求离心率或离心率的取值范围.



抛物线的性质(见下表):

抛物线的焦点弦的性质:

 
 
 
 
 
 
 

关于抛物线的几个重要结论:

(1)弦长公式同椭圆.
(2)对于抛物线y2=2px(p>0),我们有P(x0,y0)在抛物线内部P(x0,y0)在抛物线外部 
(3)抛物线y2=2px上的点P(x1,y1)的切线方程是抛物线y2=2px(p>0)的斜率为k的切线方程是y=kx+
(4)抛物线y2=2px外一点P(x0,y0)的切点弦方程是
(5)过抛物线y2=2px上两点 的两条切线交于点M(x0,y0),则
(6)自抛物线外一点P作两条切线,切点为A,B,若焦点为F, 又若切线PA⊥PB,则AB必过抛物线焦点F.

利用抛物线的几何性质解题的方法:

根据抛物线定义得出抛物线一个非常重要的几何性质:抛物线上的点到焦点的距离等于到准线的距离.利用抛物线的几何性质,可以进行求值、图形的判断及有关证明.

抛物线中定点问题的解决方法:

在高考中一般以填空题或选择题的形式考查抛物线的定义、标准方程以及几何性质等基础知识,在解答题中常常将解析几何中的方法、技巧与思想集于一身,与其他圆锥曲线或其他章节的内容相结合,考查综合分析问题的能力,而与抛物线有关的定值及最值问题是一个很好的切人点,充分利用点在抛物线上及抛物线方程的特点是解决此类题型的关键,在求最值时经常运用基本不等式、判别式以及转化为函数最值等方法。

利用焦点弦求值:

利用抛物线及焦半径的定义,结合焦点弦的表示,进行有关的计算或求值。

抛物线中的几何证明方法:
 
利用抛物线的定义及几何性质、焦点弦等进行有关的几何证明是抛物线中的一种常见题型,证明时注意利用好图形,并做好转化代换。