返回

高中数学

首页
  • 填空题
    半径为R与r的⊙A与⊙B都经过同一个点D(4,5)且与两坐标轴都相切,则R与r的关系是______.
    本题信息:数学填空题难度一般 来源:未知
  • 本题答案
    查看答案
本试题 “半径为R与r的⊙A与⊙B都经过同一个点D(4,5)且与两坐标轴都相切,则R与r的关系是______.” 主要考查您对

函数解析式的求解及其常用方法

直线与圆的位置关系

圆与圆的位置关系

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 函数解析式的求解及其常用方法
  • 直线与圆的位置关系
  • 圆与圆的位置关系

函数解析式的常用求解方法:

(1)待定系数法:(已知函数类型如:一次、二次函数、反比例函数等):若已知f(x)的结构时,可设出含参数的表达式,再根据已知条件,列方程或方程组,从而求出待定的参数,求得f(x)的表达式。待定系数法是一种重要的数学方法,它只适用于已知所求函数的类型求其解析式。
(2)换元法(注意新元的取值范围):已知f(g(x))的表达式,欲求f(x),我们常设t=g(x),从而求得,然后代入f(g(x))的表达式,从而得到f(t)的表达式,即为f(x)的表达式。
(3)配凑法(整体代换法):若已知f(g(x))的表达式,欲求f(x)的表达式,用换元法有困难时,(如g(x)不存在反函数)可把g(x)看成一个整体,把右边变为由g(x)组成的式子,再换元求出f(x)的式子。
(4)消元法(如自变量互为倒数、已知f(x)为奇函数且g(x)为偶函数等):若已知以函数为元的方程形式,若能设法构造另一个方程,组成方程组,再解这个方程组,求出函数元,称这个方法为消元法。
(5)赋值法(特殊值代入法):在求某些函数的表达式或求某些函数值时,有时把已知条件中的某些变量赋值,使问题简单明了,从而易于求出函数的表达式。


直线与圆的位置关系

由直线与圆的公共点的个数,得出以下直线和圆的三种位置关系:
(1)相交:直线与圆有两个公共点时,叫做直线和圆相交,这时直线叫做圆的割线。
(2)相切:直线和圆有唯一公共点时,叫做直线和圆相切,这时直线叫做圆的切线,唯一的公共点叫做切点。
(3)相离:直线和圆没有公共点时,叫做直线和圆相离。
其图像如下:


直线和圆的位置关系的性质:

(1)直线l和⊙O相交d<r
(2)直线l和⊙O相切d=r;
(3)直线l和⊙O相离d>r。


直线与圆位置关系的判定方法:

(1)代数法:判断直线Ax+By+C=0和圆x2+y2+Dx+Ey+F=0的位置关系,可由
 
推出mx2+nx+p=0,利用判别式△进行判断.
△>0则直线与圆相交;
△=0则直线与圆相切;
△<0则直线与圆相离.
(2)几何法:已知直线Ax+By+C=0和圆,圆心到直线的距离
d<r则直线和圆相交;
d=r则直线和圆相切;
d>r则直线和圆相离.
特别提醒:
(1)上述两种方法,以利用圆心到直线的距离进行判定较为简捷,而判别式法也适用于直线与椭圆、双曲线、抛物线位置关系的判断.
(2)直线与圆相交,应抓住半径、弦心距、半弦长组成的直角三角形,可使解法简单.

直线与圆位置关系的判定方法列表如下:

直线与圆相交的弦长公式:

(1)几何法:如图所示,直线l与圆C相交于A、B两点,线段AB的长即为l与圆相交的弦长。
设弦心距为d,半径为r,弦为AB,则有|AB|=

(2)代数法:直线l与圆交于直线l的斜率为k,则有
当直线AB的倾斜角为直角,即斜率不存在时,|AB|=


圆与圆的位置关系:

圆与圆有五种位置关系:相交、外离、外切、内切和内含。


圆与圆的位置关系的判断方法:

(1)利用圆心距和两圆半径比较大小(几何法)已知两圆的圆心距为d,则位置关系表示如下:

(2)利用两圆的交点进行判断(代数法)
设由两圆的方程组成的方程组为
 
由此方程组得:有两组不同的实数解则两圆相交;有两组相同的实数解则两圆相切;无实数解则两圆相离.

两圆公切线条数的确定:

两圆的公切线的条数是由两圆的位置关系确定的,设两圆的圆心距为d,两圆的半径分别为
则当时,两圆外离,此时有四条公切线;
时,两圆外切,连心线过切点,此时有三条公切线,有外公切线两条,内公切线一条;
时,两圆相交,连心线垂直平分公共弦,有两条外公切线;
时,两圆内切,连心线过切点,此时只有一条公切线;
时,两圆内含,此时没有公切线。


发现相似题
与“半径为R与r的⊙A与⊙B都经过同一个点D(4,5)且与两坐标轴都相...”考查相似的试题有: