返回

高中数学

首页
  • 解答题
    一艘轮船在航行中每小时的燃料费和它的速度的立方成正比,已知在速度为每小时10公里的燃料费是每小时6元,而其他与速度无关的费用是每小时96元,问
    (1)若轮船以每小时24公里的速度航行,求行驶100公里的费用总和.
    (2)如果甲、乙两地相距100公里,求轮船从甲地航行到乙地的总费用的最小值,并求出此时轮船的航行速度.
    本题信息:数学解答题难度较难 来源:未知
  • 本题答案
    查看答案
本试题 “一艘轮船在航行中每小时的燃料费和它的速度的立方成正比,已知在速度为每小时10公里的燃料费是每小时6元,而其他与速度无关的费用是每小时96元,问(1)若轮...” 主要考查您对

指数函数模型的应用

对数函数模型的应用

函数的最值与导数的关系

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 指数函数模型的应用
  • 对数函数模型的应用
  • 函数的最值与导数的关系
指数函数模型的定义

恰当选择自变量将问题的目标表示成自变量的函数f(x)=a·bx+c(a、b、c为常数,a≠0,b>0,b≠1)的形式,进而结合指数函数的性质解决问题。

指数型复合函数的性质的应用:

(1)与指数函数有关的复合函数基本上有两类:
;②.无论是哪一类,要搞清楚复合过程,才能确定复合函数的值域和单调区间,具体问题中,a的取值不定时,要对a进行分类讨论.
(2)对于形如一类的指数型复合函数,有以下结论:
①函数的定义域与f(x)的定义域相同;
②先确定函数f(x)的值域,再根据指数函数的值域、单调性,确定函数的值域;
③当a>l时,函数与函数f(x)的单调性相同;当O<a<l时,函数与函数f(x)的单调性相反.


对数函数模型的定义:

恰当选择自变量将问题的目标表示成自变量的函数f(x)=mlogax+n(m、n、a为常数,m≠0,a>0,a≠1)的形式,进而结合对数函数的性质解决问题。

对数函数模型解析式

f(x)=mlogax+n(m、n、a为常数,m≠0,a>0,a≠1)


用函数模型解函数应用题的步骤:

1.审题:弄清题意,分清条件和结论,确定数量关系,初步选择数学模型;
2.建模:将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识,建立相应的数学模型;
3.求模:求解数学模型,得出数学结论;
4.还原:将数学问题还原为实际问题的意义。


函数的最大值和最小值:

在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值,分别对应该区间上的函数值的最大值和最小值。


利用导数求函数的最值步骤:

(1)求f(x)在(a,b)内的极值;
(2)将f(x)的各极值与f(a)、f(b)比较得出函数f(x)在[a,b]上的最值。

 用导数的方法求最值特别提醒:

①求函数的最大值和最小值需先确定函数的极大值和极小值,因此,函数极大值和极小值的判别是关键,极值与最值的关系:极大(小)值不一定是最大(小)值,最大(小)值也不一定是极大(小)值;
②如果仅仅是求最值,还可将上面的办法化简,因为函数fx在[a,b]内的全部极值,只能在f(x)的导数为零的点或导数不存在的点取得(下称这两种点为可疑点),所以只需要将这些可疑点求出来,然后算出f(x)在可疑点处的函数值,与区间端点处的函数值进行比较,就能求得最大值和最小值;
③当f(x)为连续函数且在[a,b]上单调时,其最大值、最小值在端点处取得。 


生活中的优化问题:

生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为优化问题,解决优化问题的方法很多,如:判别式法,均值不等式法,线性规划及利用二次函数的性质等,
不少优化问题可以化为求函数最值问题.导数方法是解这类问题的有效工具.

用导数解决生活中的优化问题应当注意的问题:

(1)在求实际问题的最大(小)值时,一定要考虑实际问题的意义,不符合实际意义的值应舍去;
(2)在实际问题中,有时会遇到函数在区间内只有一个点使f'(x)=0的情形.如果函数在这点有极大(小)值,那么不与端点比较,也可以知道这就是最大(小)值;
(3)在解决实际优化问题时,不仅要注意将问题中涉及的变量关系用函数关系表示,还应确定出函数关系式中自变量的定义区间.

利用导数解决生活中的优化问题:

 (1)运用导数解决实际问题,关键是要建立恰当的数学模型(函数关系、方程或不等式),运用导数的知识与方法去解决,主要是转化为求最值问题,最后反馈到实际问题之中.
 (2)利用导数求f(x)在闭区间[a,b]上的最大值和最小值的步骤,
  ①求函数y =f(x)在(a,b)上的极值;
  ②将函数y=f(x)的各极值与端点处的函数值f(a)、f(b)比较,其中最大的一个是最大值,最小的一个是最小值.
  (3)定义在开区间(a,b)上的可导函数,如果只有一个极值点,该极值点必为最值点.


发现相似题
与“一艘轮船在航行中每小时的燃料费和它的速度的立方成正比,已...”考查相似的试题有: