本试题 “已知函数f(x)=ex+x,对于曲线y=f(x)上横坐标成等差数列的三个点A,B,C,给出以下判断:①△ABC一定是钝角三角形;②△ABC可能是直角三角形;③△ABC可能是等腰三角...” 主要考查您对函数的单调性与导数的关系
等差中项
等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
导数和函数的单调性的关系:
(1)若f′(x)>0在(a,b)上恒成立,则f(x)在(a,b)上是增函数,f′(x)>0的解集与定义域的交集的对应区间为增区间;
(2)若f′(x)<0在(a,b)上恒成立,则f(x)在(a,b)上是减函数,f′(x)<0的解集与定义域的交集的对应区间为减区间。
利用导数求解多项式函数单调性的一般步骤:
①确定f(x)的定义域;
②计算导数f′(x);
③求出f′(x)=0的根;
④用f′(x)=0的根将f(x)的定义域分成若干个区间,列表考察这若干个区间内f′(x)的符号,进而确定f(x)的单调区间:f′(x)>0,则f(x)在对应区间上是增函数,对应区间为增区间;f′(x)<0,则f(x)在对应区间上是减函数,对应区间为减区间。
函数的导数和函数的单调性关系特别提醒:
若在某区间上有有限个点使f′(x)=0,在其余的点恒有f′(x)>0,则f(x)仍为增函数(减函数的情形完全类似).即在区间内f′(x)>0是f(x)在此区间上为增函数的充分条件,而不是必要条件。
等差中项:
若a,A,b成等差数列,那么A叫做a与b的等差中项,且2A=a+b,即,反之,若,则a,A,b成等差数列。
等差数列中相邻三项之间存在如下关系:
(1) 反之,若数列中相邻三项之间存在如下关系:则该数列是等差数列,
(2) 若a,A,b成等差数列,那么 2A=a+b,A-a =b -A,a-A =A -b都是等价的.
与“已知函数f(x)=ex+x,对于曲线y=f(x)上横坐标成等差数列的三个...”考查相似的试题有: