返回

高中三年级数学

首页
  • 解答题
    已知函数f(x)=a|x|+(a>0,a≠1)。
    (1)若a>1,且关于x的方程f(x)=m有两个不同的正数解,求实数m的取值范围;
    (2)设函数g(x)=f(-x),x∈[-2,+∞),g(x)满足如下性质:若存在最大(小)值,则最大(小)值与a无关,试求a的取值范围。
    本题信息:2012年浙江省模拟题数学解答题难度极难 来源:叶新丽
  • 本题答案
    查看答案
本试题 “已知函数f(x)=a|x|+(a>0,a≠1)。(1)若a>1,且关于x的方程f(x)=m有两个不同的正数解,求实数m的取值范围;(2)设函数g(x)=f(-x),x∈[-2,+∞)...” 主要考查您对

用二分法求函数零点的近似值

函数的最值与导数的关系

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 用二分法求函数零点的近似值
  • 函数的最值与导数的关系

二分法的定义

对于区间[a,b]上连续不断,且f(a)·f(b)<0的函数y=f(x),通过不断把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似解的方法叫做二分法。

给定精确度ξ,用二分法求函数f(x)的零点的近似值的步骤:

(1)确定区间[a,b],验证f(a)·f(b)<0,给定精确度ξ;
(2)求区间(a,b)的中点x1
(3)计算f(x1),
①若f(x1)=0,则就是函数的零点;
②若f(a)·f(x1)<0,则令b=x1(此时零点x0∈(a,x1));
③若f(x1)·f(b)<0,则令a=x1(此时零点x0∈(x1,b));
(4)判断是否达到精确度ξ,即若|a-b|<ξ,则达到零点近似值a(或b);否则重复(2)-(4)。


利用二分法求方程的近似解的特点:

(1)二分法的优点是思考方法非常简明,缺点是为了提高解的精确度,求解的过程比较长,有些计算不用计算工具甚至无法实施,往往需要借助于科学计算器.
(2)二分法是求实根的近似计算中行之有效的最简单的方法,它只要求函数是连续的,因此它的使用范围很广,并便于在计算机上实现,但是它不能求重根,也不能求虚根。


 关于用二分法求函数零点近似值的步骤应注意以下几点:

①第一步中要使区间长度尽量小,f(a),f(b)的值比较容易计算,且f(a).f(b)<0;
②根据函数的零点与相应方程根的关系,求函数的零点与求相应方程的根是等价的,对于求方程f(x)=g(x)的根,可以构造函数F(x)=f(x)-g(x),函数F(x)的零点即为方程f(x)=g(x)的根;
③设函数的零点为x0,则a<x0<b,作出数轴,在数轴上标出a,b,x0对应的点,如图,所以0<x0-a<b-a,a一b<x0-b<0.由于|a -b|<ε,所以|x0 -a|<b-a<ε,|x0 -b|<|a -b|<ε即a或b作为函数的零点x0的近似值都达到给定的精确度ε
    
④我们可用二分法求方程的近似解.由于计算量大,而且是重复相同的步骤,因此,我们可以通过设计一定的计算程序,借助计算器或计算机完成计算.


函数的最大值和最小值:

在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值,分别对应该区间上的函数值的最大值和最小值。


利用导数求函数的最值步骤:

(1)求f(x)在(a,b)内的极值;
(2)将f(x)的各极值与f(a)、f(b)比较得出函数f(x)在[a,b]上的最值。

 用导数的方法求最值特别提醒:

①求函数的最大值和最小值需先确定函数的极大值和极小值,因此,函数极大值和极小值的判别是关键,极值与最值的关系:极大(小)值不一定是最大(小)值,最大(小)值也不一定是极大(小)值;
②如果仅仅是求最值,还可将上面的办法化简,因为函数fx在[a,b]内的全部极值,只能在f(x)的导数为零的点或导数不存在的点取得(下称这两种点为可疑点),所以只需要将这些可疑点求出来,然后算出f(x)在可疑点处的函数值,与区间端点处的函数值进行比较,就能求得最大值和最小值;
③当f(x)为连续函数且在[a,b]上单调时,其最大值、最小值在端点处取得。 


生活中的优化问题:

生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为优化问题,解决优化问题的方法很多,如:判别式法,均值不等式法,线性规划及利用二次函数的性质等,
不少优化问题可以化为求函数最值问题.导数方法是解这类问题的有效工具.

用导数解决生活中的优化问题应当注意的问题:

(1)在求实际问题的最大(小)值时,一定要考虑实际问题的意义,不符合实际意义的值应舍去;
(2)在实际问题中,有时会遇到函数在区间内只有一个点使f'(x)=0的情形.如果函数在这点有极大(小)值,那么不与端点比较,也可以知道这就是最大(小)值;
(3)在解决实际优化问题时,不仅要注意将问题中涉及的变量关系用函数关系表示,还应确定出函数关系式中自变量的定义区间.

利用导数解决生活中的优化问题:

 (1)运用导数解决实际问题,关键是要建立恰当的数学模型(函数关系、方程或不等式),运用导数的知识与方法去解决,主要是转化为求最值问题,最后反馈到实际问题之中.
 (2)利用导数求f(x)在闭区间[a,b]上的最大值和最小值的步骤,
  ①求函数y =f(x)在(a,b)上的极值;
  ②将函数y=f(x)的各极值与端点处的函数值f(a)、f(b)比较,其中最大的一个是最大值,最小的一个是最小值.
  (3)定义在开区间(a,b)上的可导函数,如果只有一个极值点,该极值点必为最值点.