返回

高中数学

首页
  • 解答题
    在平面直角坐标系xOy中,点An满足
    OA1
    =(0,1)
    ,且
    AnAn+1
    =(1,1)
    ;点Bn满足
    OB1
    =(3,0)
    ,且
    BnBn+1
    =(3•(
    2
    3
    )n,0)
    ,其中n∈N*
    (1)求
    OA2
    的坐标,并证明点An在直线y=x+1上;
    (2)记四边形AnBnBn+1An+1的面积为an,求an的表达式;
    (3)对于(2)中的an,是否存在最小的正整数P,使得对任意n∈N*都有an<P成立?若存在,求P的值;若不存在,请说明理由.
    本题信息:2013年普陀区一模数学解答题难度一般 来源:未知
  • 本题答案
    查看答案
本试题 “在平面直角坐标系xOy中,点An满足OA1=(0,1),且AnAn+1=(1,1);点Bn满足OB1=(3,0),且BnBn+1=(3•(23)n,0),其中n∈N*.(1)求OA2的坐标,并证明点An在直线...” 主要考查您对

函数的奇偶性、周期性

数列求和的其他方法(倒序相加,错位相减,裂项相加等)

平面向量的应用

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 函数的奇偶性、周期性
  • 数列求和的其他方法(倒序相加,错位相减,裂项相加等)
  • 平面向量的应用

函数的奇偶性定义:

偶函数:一般地,如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),则称函数f(x)为偶函数。
奇函数:一般地,如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)是奇函数。 
 
函数的周期性

(1)定义:若T为非零常数,对于定义域内的任一x,使f(x+T)=f(x)恒成立,则f(x)叫做周期函数,T叫做这个函数的一个周期。
周期函数定义域必是无界的。
(2)若T是周期,则k·T(k≠0,k∈Z)也是周期,所有周期中最小的正数叫最小正周期。一般所说的周期是指函数的最小正周期。
周期函数并非都有最小正周期,如常函数f(x)=C。


奇函数与偶函数性质:

(1)奇函数与偶函数的图像的对称性:奇函数的图像关于原点对称,偶函数的图像关于y轴对称。
(3)在公共定义域内,①两个奇函数的和是奇函数,两个奇函数的积是偶函数; ②两个偶函数的和、积是偶函数; ③一个奇函数,一个偶函数的积是奇函数。

注:定义域在数轴上关于原点对称是函数f(x)为奇函数或偶函数的必要但不充分条件.


1、函数是奇函数或偶函数的前提定义域必须关于原点对称;定义域在数轴上关于原点对称是函数f(x)为奇函数或偶函数的必要但不充分条件.

2、函数的周期性    令a , b 均不为零,若: 
(1)函数y = f(x) 存在 f(x)=f(x + a) ==> 函数最小正周期 T=|a| 
(2)函数y = f(x) 存在f(a + x) = f(b + x) ==> 函数最小正周期 T=|b-a| 
(3)函数y = f(x) 存在 f(x) = -f(x + a) ==> 函数最小正周期 T=|2a| 
(4)函数y = f(x) 存在 f(x + a) =  ==> 函数最小正周期 T=|2a| 
(5)函数y = f(x) 存在 f(x + a) =   ==> 函数最小正周期 T=|4a|


数列求和的常用方法:

1.裂项相加法:数列中的项形如的形式,可以把表示为,累加时抵消中间的许多项,从而求得数列的和;
2、错位相减法:源于等比数列前n项和公式的推导,对于形如的数列,其中为等差数列,为等比数列,均可用此法;
3、倒序相加法:此方法源于等差数列前n项和公式的推导,目的在于利用与首末两项等距离的两项相加有公因式可提取,以便化简后求和。
4、分组转化法:把数列的每一项分成两项,或把数列的项“集”在一块重新组合,或把整个数列分成两个部分,使其转化为等差或等比数列,这一求和方法称为分组转化法。
5、公式法求和:所给数列的通项是关于n的多项式,此时求和可采用公式求和,常用的公式有:
 
数列求和的方法多种多样,要视具体情形选用合适方法。


数列求和特别提醒:

(1)对通项公式含有的一类数列,在求时,要注意讨论n的奇偶性;
(2)在用等比数列前n项和公式时,一定要分q=1和q≠1两种情况来讨论。

 

平面向量在几何、物理中的应用

1、向量在平面几何中的应用:
(1)证明线段相等平行,常运用向量加法的三角形法则、平行四边形法则,有时也用到向量减法的定义;
(2)证明线段平行,三角形相似,判断两直线(或线段)是否平行,常运用到向量共线的条件;
(3)证明垂直问题,常用向量垂直的充要条件;
1、向量在三角函数中的应用:
(1)以向量为载体研究三角函数中最值、单调性、周期等三角函数问题;
(2)通过向量的线性运算及数量积、共线来解决三角形中形状的判断、边角的大小与关系。
2、向量在物理学中的应用:
由于力、速度是向量,它们的分解与合成与向量的加法相类似,可以用向量方法来解决,力做的功就是向量中数量积的一种体现。
3、向量在解析几何中的应用:
(1)以向量为工具研究平面解析几何中的坐标、性质、长度等问题;
(2)以向量知识为工具研究解析几何中常见的轨迹与方程问题。


平面向量在几何、物理中的应用

1、用向量解决几何问题的步骤:
(1)建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面问题转化为向量问题;
(2)通过向量运算,研究几何元素之间的关系,如:距离,夹角等;
(3)把运算结果“翻译”成几何关系。
2、用向量中的有关知识研究物理中的相关问题,步骤如下:
(1)问题的转化,即把物理问题转化为数学问题;
(2)模型的建立,即建立以向量为主题的数学模型;
(3)求出数学模型的有关解;
(4)将问题的答案转化为相关的物理问题。


发现相似题
与“在平面直角坐标系xOy中,点An满足OA1=(0,1),且AnAn+1=(1,1...”考查相似的试题有: