返回

高中三年级数学

首页
  • 单选题
    已知双曲线与圆交于A、B、C、D四点,若四边形ABCD是正方形,则双曲线的离心率是
    [     ]

    A.
    B.
    C.
    D.
    本题信息:2012年浙江省模拟题数学单选题难度一般 来源:朱潇(高中数学)
  • 本题答案
    查看答案
本试题 “已知双曲线与圆交于A、B、C、D四点,若四边形ABCD是正方形,则双曲线的离心率是[ ]A.B.C.D.” 主要考查您对

圆的标准方程与一般方程

双曲线的性质(顶点、范围、对称性、离心率)

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 圆的标准方程与一般方程
  • 双曲线的性质(顶点、范围、对称性、离心率)

圆的定义:

平面内与一定点的距离等于定长的点的集合是圆。定点就是圆心,定长就是半径。

圆的标准方程:

圆的标准方程,圆心(a,b),半径为r;特别当圆心是(0,0),半径为r时,圆的标准方程为

圆的一般方程:

圆的一般方程
>0时,表示圆心在,半径为的圆;
=0时,表示点
<0时,不表示任何图形。


圆的定义的理解:

(1)定位条件:圆心;定形条件:半径。
(2)当圆心位置与半径大小确定后,圆就唯一确定了.因此一个圆最基本的要素是圆心和半径.

圆的方程的理解:

(1)圆的标准方程中含有a,b,r三个独立的系数,因此,确定一个圆需三个独立的条件.其中圆心是圆的定位条件,半径是圆的定形条件.
(2)圆的标准方程的优点在于明确显示了圆心和半径.
(3)圆的一般方程形式的特点:
a.的系数相同且不等于零;
b.不含xy项.
(4)形如的方程表示圆的条件:
a.A=C≠0;
b.B=0;
c.


几种特殊位置的圆的方程:

条件 标准方程 一般方程
圆心在原点
过原点
圆心在x轴上
圆心在y轴上
与x轴相切
与y轴相切
与x,y轴都相切
圆心在x轴上且过原点
圆心在y轴上且过原点

双曲线的离心率的定义:

(1)定义:双曲线的焦距与实轴长的比叫做双曲线的离心率.
(2)e的范围:e>l.
(3)e的含义:e是表示双曲线开口大小的一个量,e越大开口越大.

渐近线与实轴的夹角也增大。


双曲线的性质:

1、焦点在x轴上:顶点:(a,0),(-a,0);焦点:(c,0),(-c,0);
渐近线方程:
2、焦点在y轴上:顶点:(0,-a),(0,a);焦点:(0,c),(0,-c);
渐近线方程:
3、轴:x、y为对称轴,实轴长为2a,虚轴长为2b,焦距2c。
4、离心率
5、中,取值范围:x≤-a或x≥a,y∈R,对称轴是坐标轴,对称中心是原点。


双曲线的焦半径:

双曲线上的点之间的线段长度称作焦半径,分别记作


 
 
 
关于双曲线的几个重要结论:
 
(1)弦长公式(与椭圆弦长公式相同).
(2)焦点三角形:已知的两个焦点,P为双曲线上一点(异于顶点),
的面积为
在解决与焦点三角形有关的问题时,应注意双曲线的两个定义、焦半径公式以及三角形的边角关系、正弦定理等知识的综合运用,还应注意灵活地运用平面几何、三角函数等知识来分析解决问题.
(3)基础三角形:如图所示,△AOB中,
 
(4)双曲线的一个焦点到一条渐近线的距离等于虚半轴长.
(5)自双曲线的焦点作渐近线的垂线,垂足必在相应的准线上,即过焦点所作的渐近线的垂线,渐近线及相应准线三线共点.
(6)以双曲线的焦半径为直径的圆与以实轴为直径的圆外切或内切.
(7)双曲线上一点P(x0,y0)处的切线方程是
(8)双曲线划分平面区域:对于双曲线,我们有:P(x0,y0)在双曲线内部(与焦点共区域) P(x0,y0)在双曲线外部(与焦点不其区域) 

发现相似题
与“已知双曲线与圆交于A、B、C、D四点,若四边形ABCD是正方形,...”考查相似的试题有: