本试题 “求过直线l1:x-2y+3=0与直线l2:2x+3y-8=0的交点,且到点P(0,4)的距离为1的直线l的方程.” 主要考查您对两条直线的交点坐标
点到直线的距离
等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
两条直线的交点:
两直线:,,当它们相交时,方程组有唯一的解,以这个解为坐标的点就是两直线的交点。
若方程组无解,两直线平行;若方程组有无数个解,则两直线重合。
两条直线的交点特别提醒:
①若方程组无解,则直线平行;反之,亦成立;
②若方程组有无穷多解,则直线重合;反之,也成立;
③当有交点时,方程组的解就是交点坐标;
④相交的条件是
点到直线的距离公式:
1、若点P(x0,y0)在直线Ax+By+C=0(A,B不同时为0)上,则Ax0+By0+C=0。
2、若点P(x0,y0)不在直线Ax+By+C=0(A,B不同时为0)上,则Ax0+By0+C≠0,此时点P(x0,y0)直线Ax+By+C=0(A,B不同时为0)的距离d=。
点到直线的距离公式的理解:
①点到直线的距离是直线上的点与直线外一点的连线的最短距离(这是从运动观点来看的).
②若给出的直线方程不是一般式,则应先把方程化为一般式,再利用公式求距离.
③点到直线的距离公式适用于任何情况,其中点P在直线l上时,它到直线的距离为0.
④点到几种特殊直线的距离:
与“求过直线l1:x-2y+3=0与直线l2:2x+3y-8=0的交点,且到点P(0...”考查相似的试题有: