本试题 “下列说法中,①等边三角形是等腰三角形;②三角形外角和大于这个三角形内角和;③四边形的内角最多可以有三个钝角;④多边形的对角线有7条,正确的个数有几个( ...” 主要考查您对多边形的内角和和外角和
多边形
等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
在平面内,由若干不在同一直线上的线段首尾顺次连接组成的封闭图形叫做多边形。
对角线:在多边形中,连接不相邻的两个顶点的线段叫做多边形的对角线。
外角:多边形的一边与另一边的反向延长线所组成的角叫做这个多边形的外角。
如图示:
多边形的内角和:
n边形的内角和等于(n-2)·180°。(多边形内角和定理)
多边形的外角和:
在多边形的每个顶点处取多边形的一个外角,它们的和叫做多边形的外角和。
多边形的外角和等于360°。(与边数无关) (多边形的外角和定理)
多边形外角和列举:
多边形定理:
1、内角和定理:
n边形的内角和等于(n-2)x180°
可逆用:
·n边形的边=(内角和÷180°)+2
·过n边形一个顶点有(n-3)条对角线
·因为每个顶点和它自己及相邻的两个顶点都不能做对角线,所以n边形的每个顶点只能和n-3个其他的顶点之间做对角线,又因为每一条对角线都要连结两个顶点,所以要除以2。
n边形共有n×(n-3)÷2个对角线
· n边形过一个顶点引出所有对角线后,把多边形分成n-2个三角形
推论:
·任意凸形多边形的外角和都等于360°。
·多边形对角线的计算公式:n边形的对角线条数等于1/2·n(n-3)
·在平面内,各边相等,各内角也都相等的多边形叫做正多边形。【两个条件必须同时满足
反例:矩形(各内角相等,各边不一定相等);菱形(各边相等,各内角不一定相等)】
2、外角和定理:
n边形外角和等于n·180°-(n-2)·180°=360°
多边形的每个内角与它相邻的外角是邻补角,所以n边形内角和加外角和等于n·180°
与“下列说法中,①等边三角形是等腰三角形;②三角形外角和大于这...”考查相似的试题有: