返回

高中数学

首页
  • 解答题
    规定Axm=x(x-1)(x-2)•…•(x-m+1),其中x∈R,m∈N*.
    函数f(x)=aAx+13+3bAx2+1(ab≠0)在x=1处取得极值,在x=2处的切线的平行向量为
    OP
    =(b+5,5a)

    (1)求f(x)的解析式;
    (2)求f(x)的单调区间;
    (3)是否存在正整数m,使得方程f(x)=6x-
    16
    3
    在区间(m,m+1)内有且只有两个不等实根?若存在,求出m的值;若不存在,说明理由.
    本题信息:数学解答题难度较难 来源:未知
  • 本题答案
    查看答案
本试题 “规定Axm=x(x-1)(x-2)•…•(x-m+1),其中x∈R,m∈N*.函数f(x)=aAx+13+3bAx2+1(ab≠0)在x=1处取得极值,在x=2处的切线的平行向量为OP=(b+5,5a).(1)...” 主要考查您对

函数的单调性与导数的关系

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 函数的单调性与导数的关系

导数和函数的单调性的关系:

(1)若f′(x)>0在(a,b)上恒成立,则f(x)在(a,b)上是增函数,f′(x)>0的解集与定义域的交集的对应区间为增区间;
(2)若f′(x)<0在(a,b)上恒成立,则f(x)在(a,b)上是减函数,f′(x)<0的解集与定义域的交集的对应区间为减区间。


利用导数求解多项式函数单调性的一般步骤:

①确定f(x)的定义域;
②计算导数f′(x);
③求出f′(x)=0的根;
④用f′(x)=0的根将f(x)的定义域分成若干个区间,列表考察这若干个区间内f′(x)的符号,进而确定f(x)的单调区间:f′(x)>0,则f(x)在对应区间上是增函数,对应区间为增区间;f′(x)<0,则f(x)在对应区间上是减函数,对应区间为减区间。

函数的导数和函数的单调性关系特别提醒:

若在某区间上有有限个点使f′(x)=0,在其余的点恒有f′(x)>0,则f(x)仍为增函数(减函数的情形完全类似).即在区间内f′(x)>0是f(x)在此区间上为增函数的充分条件,而不是必要条件。 


发现相似题
与“规定Axm=x(x-1)(x-2)•…•(x-m+1),其中x∈R,m∈N*.函数f...”考查相似的试题有: