本试题 “已知函数,(a≠0)为奇函数。(1)求实数a的值(2)解方程:” 主要考查您对函数的奇偶性、周期性
对数与对数运算
等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
函数的奇偶性定义:
偶函数:一般地,如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),则称函数f(x)为偶函数。
奇函数:一般地,如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)是奇函数。
函数的周期性:
(1)定义:若T为非零常数,对于定义域内的任一x,使f(x+T)=f(x)恒成立,则f(x)叫做周期函数,T叫做这个函数的一个周期。
周期函数定义域必是无界的。
(2)若T是周期,则k·T(k≠0,k∈Z)也是周期,所有周期中最小的正数叫最小正周期。一般所说的周期是指函数的最小正周期。
周期函数并非都有最小正周期,如常函数f(x)=C。
奇函数与偶函数性质:
(1)奇函数与偶函数的图像的对称性:奇函数的图像关于原点对称,偶函数的图像关于y轴对称。
(3)在公共定义域内,①两个奇函数的和是奇函数,两个奇函数的积是偶函数; ②两个偶函数的和、积是偶函数; ③一个奇函数,一个偶函数的积是奇函数。
注:定义域在数轴上关于原点对称是函数f(x)为奇函数或偶函数的必要但不充分条件.
1、函数是奇函数或偶函数的前提定义域必须关于原点对称;定义域在数轴上关于原点对称是函数f(x)为奇函数或偶函数的必要但不充分条件.
2、函数的周期性 令a , b 均不为零,若:
(1)函数y = f(x) 存在 f(x)=f(x + a) ==> 函数最小正周期 T=|a|
(2)函数y = f(x) 存在f(a + x) = f(b + x) ==> 函数最小正周期 T=|b-a|
(3)函数y = f(x) 存在 f(x) = -f(x + a) ==> 函数最小正周期 T=|2a|
(4)函数y = f(x) 存在 f(x + a) = ==> 函数最小正周期 T=|2a|
(5)函数y = f(x) 存在 f(x + a) = ==> 函数最小正周期 T=|4a|
对数的定义:
如果ax=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记做,其中a叫做对数的底数,N叫做真数。
通常以10为底的对数叫做常用对数,记做;
以无理数e=2.71828…为底的对数叫做自然对数,记做。
由定义知负数和0没有对数。
常用对数:
以10为底的对数叫做常用对数,。
自然对数:
以e为底的对数叫做自然对数,e是无理数,e≈-2. 718 28,。
对数的运算性质:
如果a>0,且a≠1,M>0,N>0,那么
(1);
(2);
(3);
(4)。
对数的恒等式:
(1);(2);
(3);(4);
(5)。
对数的换底公式及其推论:
对数式的化简与求值:
(1)化同底是对数式变形的首选方向,其中经常用到换底公式及其推论.
(2)结合对数定义,适时进行对数式与指数式的互化.
(3)利用对数运算法则,在积、商、幂的对数与对数的和、差、倍之间进行转化,
与“已知函数,(a≠0)为奇函数。(1)求实数a的值(2)解方程:”考查相似的试题有: