返回

高中数学

首页
  • 解答题
    为了研究化肥对小麦产量的影响,某科学家将一片土地划分成200个50m2的小块,并在100个小块上施用新化肥,留下100个条件大体相当的小块不施用新化肥.下表1和表2分别是施用新化肥和不施用新化肥的小麦产量频数分布表(小麦产量单位:kg)
    表1:施用新化肥小麦产量频数分布表
    小麦产量 [0,10) [10,20) [20,30) [30,40) [40,50)
    频数 10 35 40 10 5
    表2:不施用新化肥小麦产量频数分布表
    小麦产量 [0,10) [10,20) [20,30) [30,40)
    频数 15 50 30 5
    (1)完成下面频率分布直方图;

    魔方格

    魔方格

    施用新化肥后小麦产量的频率分布直方图       不施用新化肥后小麦产量的频率分布直方图
    (2)统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计施用化肥和不施用化肥的一小块土地的小麦平均产量;
    (3)完成下面2×2列联表,并回答能否有99.5%的把握认为“施用新化肥和不施用新化肥的小麦产量有差异”
    表3:
    小麦产量小于20kg 小麦产量不小于20kg 合计
    施用新化肥 a= b=
    不施用新化肥 c= d=
    合计 n=
    附:K2=
    n(ad-bc)2
    (a+b)(c+d)(a+c)(b+d)

    P(K2≥k) 0.050     0.010     0.005      0.001
    k 3.841     6.635     7.879     10.828

    本题信息:2012年平遥县模拟数学解答题难度较难 来源:未知
  • 本题答案
    查看答案
本试题 “为了研究化肥对小麦产量的影响,某科学家将一片土地划分成200个50m2的小块,并在100个小块上施用新化肥,留下100个条件大体相当的小块不施用新化肥.下表1和...” 主要考查您对

频率分布表、频率分布直方图、频率分布折线图、茎叶图

独立性检验的基本思想及其初步应用

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 频率分布表、频率分布直方图、频率分布折线图、茎叶图
  • 独立性检验的基本思想及其初步应用

频率分布:

样本中所有数据(或者数据组)的频率和样本容量的比就是该数据的频率,所有数据(或者数据组)的频率的分布变化规律叫做频率分布,可以用频率分布表,频率分布折线图,茎叶图,频率分布直方图来表示.

频率分布折线图:

如果将频率分布直方图中各相邻的矩形的上底边的中点顺次连接起,就得到一条折线,称这条折线为本组数据的频率折线图。

频数分布表:

反映总体频率分布的表格。
一般地,编制频率分布表的步骤如下:(1)求全距,决定组数和组距;(2)分组,通常对组内数值所在区间取左闭右开区间,最后一组取闭区间;(3)登记频数,计算频率,列出频率分布表。

茎叶图:

(1)茎是指中间的一列数,叶是从茎的旁边生长出来的数。
(2)制作茎叶图的方法是:将所有两位数的十位数字作为“茎”,个位数字作为“叶”,茎相同者共用一个茎,茎按从小到大的顺序从上向下列出,共茎的叶一般按从大到小(或从小到大)的顺序同行列出;
(3)茎叶图的性质: ①茎叶图的优点是保留了原始数据,便于记录及表示,能反映数据在各段上的分布情况。
②茎叶图不能直接反映总体的分布情况,这就需要通过茎叶图给出的数据求出数据的数字特征,进一步估计总体情况。


茎叶图的性质:

 ①茎叶图的优点是保留了原始数据,便于记录及表示,能反映数据在各段上的分布情况。
②茎叶图不能直接反映总体的分布情况,这就需要通过茎叶图给出的数据求出数据的数字特征,进一步估计总体情况。


作频率分布直方图的步骤:

①求极差,即一组数据中最大值和最小值的差。
②决定组距与组数.将数据分组时,组数应力求合适,以使数据的分布规律能较清楚的呈现出来。这时应注意:a.一般样本容量越大,所分组数越多;b.为方便起见,组距的选择应力求“取整”;c.当样本容量不超过100时,按照数据的多少,通常分成5组~l2组.
③将数据分组.
④计算各小组的频率(),作频率分布表。
⑤画频率分布直方图。


发现相似题
与“为了研究化肥对小麦产量的影响,某科学家将一片土地划分成200...”考查相似的试题有: