本试题 “(10分)如图,PA⊥矩形ABCD所在的平面,M、N分别是AB、PC的中点.(1)求证:MN//平面PAD(2)求证:MN⊥CD(3)若∠PDA=45°,求证:MN⊥平面PCD.” 主要考查您对点到直线、平面的距离
等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
点到直线的距离:
由点向直线引垂线,这一点到垂足之间的距离。
点到平面的距离:
由点向平面引垂线,这点到垂足之间的距离,就叫做点到平面的距离。
求点面距离常用的方法:
(1)直接利用定义
①找到(或作出)表示距离的线段;
②抓住线段(所求距离)所在三角形解之.
(2)利用两平面互相垂直的性质如果已知点在已知平面的垂面上,则已知点到两平面交线的距离就是所求的点面距离.
(3)体积法其步骤是:①在平面内选取适当三点和已知点构成三棱锥;②求出此三棱锥的体积V和所取三点构成三角形的面积S;③由求出.这种方法的优点是不必作出垂线即可求点面距离,难点在于如何构造合适的三棱锥以便于计算.
(4)转化法:将点到平面的距离转化为直线与平面的距离来求.
(5)向量法:
与“(10分)如图,PA⊥矩形ABCD所在的平面,M、N分别是AB、PC的中点...”考查相似的试题有: