返回

高中三年级数学

首页
  • 单选题
    已知向量,且,则tanx=
    [     ]

    A.0
    B.1
    C.2
    D.
    本题信息:2012年同步题数学单选题难度一般 来源:朱潇(高中数学)
  • 本题答案
    查看答案
本试题 “已知向量,且,则tanx=[ ]A.0B.1C.2D.” 主要考查您对

同角三角函数的基本关系式

向量共线的充要条件及坐标表示

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 同角三角函数的基本关系式
  • 向量共线的充要条件及坐标表示

同角三角函数的关系式:

(1)
(2)商数关系:
(3)平方关系:


同角三角函数的基本关系的应用: 

已知一个角的一种三角函数值,根据角的终边的位置利用同角三角函数的基本关系,可以求出这个角的其他三角函数值.

同角三角函数的基本关系的理解

(1)在公式中,要求是同一个角,如不一定成立.
(2)上面的关系式都是对使它的两边具有意义的那些角而言的,如:基本三角关系式。对一切α∈R成立; Z)时成立.
(3)同角三角函数的基本关系的应用极为为广泛,它们还有如下等价形式: 

(4)在应用平方关系时,常用到平方根、算术平方根和绝对值的概念,应注意“±”的选取. 间的基本变形 三者通过 ,可知一求二,有关 等化简都与此基本变形有广泛的联系,要熟练掌握。


向量共线的充要条件:

向量共线,当且仅当有唯一一个实数λ,使得

向量共线的几何表示:

,其中,当且仅当时,向量共线。


向量共线(平行)基本定理的理解:

(1)对于向量aa≠0),b,如果有一个实数λ,使得ba,那么由向量数乘的定义知,ab共线.
(2)反过来,已知向量ab共线,a≠0,且向量b的长度是向量a的长度的μ倍,即|b|=μ|a|,那么当ab同方向时,有b=μa;当ab反方向时,有b=-μa.
(3)向量平行与直线平行是有区别的,直线平行不包括重合.
(4)判断a(a≠0)b是否共线时,关键是寻找a前面的系数,如果系数有且只有一个,说明共线;如果找不到满足条件的系数,则这两个向量不共线.
(5)如果a=b=0,则数λ仍然存在,且此时λ并不唯一,是任意数值.