返回

高中数学

首页
  • 解答题
    在底面半径为r,高为h,全面积为πa2的圆锥中.
    (1)写出h关于r的函数;
    (2)当底面半径r为何值时,圆锥体积最大?最大体积是多少?
    本题信息:数学解答题难度一般 来源:未知
  • 本题答案
    查看答案
本试题 “在底面半径为r,高为h,全面积为πa2的圆锥中.(1)写出h关于r的函数;(2)当底面半径r为何值时,圆锥体积最大?最大体积是多少?” 主要考查您对

函数的单调性、最值

柱体、椎体、台体的表面积与体积

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 函数的单调性、最值
  • 柱体、椎体、台体的表面积与体积

单调性的定义:

1、对于给定区间D上的函数f(x),若对于任意x1,x2∈D,当x1<x2时,都有f(x1)<f(x2),则称f(x)是区间上的增函数;当x1<x2时,都有f(x1)>f(x2),则称f(x)是区间D上的减函数。

2、如果函数y=f(x)在区间上是增函数或减函数,就说函数y=f(x)在区间D上具有(严格的)单调性,区间D称为函数f(x)的单调区间。如果函数y=f(x)在区间D上是增函数或减函数,区间D称为函数f(x)的单调增或减区间 
 
3、最值的定义:
最大值:一般地,设函数y=f(x)的定义域为I,如果存在实数M,满足: ①对于任意的x∈I,都有f(x)≤M;②存在x0∈I,使得f(x0)=M;那么,称M是f(x)的最大值.
最小值:一般地,设函数y=f(x)的定义域为I,如果存在实数M,满足: ①对于任意的x∈I,都有f(x)≥M;②存在x0∈I,使得f(x0)=M;那么,称M是f(x)的最小值


判断函数f(x)在区间D上的单调性的方法

(1)定义法:其步骤是:
①任取x1,x2∈D,且x1<x2;
②作差f(x1)-f(x2)或作商 ,并变形;
③判定f(x1)-f(x2)的符号,或比较 与1的大小;
④根据定义作出结论。
(2)复合法:利用基本函数的单调性的复合。
(3)图象法:即观察函数在区间D上部分的图象从左往右看是上升的还是下降的。


侧面积和全面积的定义:

(1)侧面积的定义:把柱、锥、台的侧面沿着它们的一条侧棱或母线剪开,所得到的展开图的面积,就是空间几何体的侧面积.
(2)全面积的定义:空间几何体的侧面积与底面积的和叫做空间几何体的全面积, 

柱体、锥体、台体的表面积公式(c为底面周长,h为高,h′为斜高,l为母线)

柱体、锥体、台体的体积公式:




多面体的侧面积与体积:

多面体 图像 侧面积 体积
棱柱
直棱柱的侧面展开图是矩形
棱锥
正棱柱的侧面展开图是一些全等的等腰三角形,
棱台
正棱台的侧面展开图是一些全等的等腰梯形,
  

旋转体的侧面积和体积:

旋转体 图形 侧面积与全面积 体积
圆柱
圆柱的侧面展开图的矩形:
圆锥
圆锥的侧面展开图是扇形:
圆台
圆台的侧面展开图是扇环: